

AD/ADVANTAGE

MANTIS Language
OS/390, VSE/ESA

P39-5002-00

AD/Advantage®
MANTIS Language OS/390, VSE/ESA

Publication Number P39-5002-00

� 1992–1998, 2001 Cincom Systems, Inc.
All rights reserved

This document contains unpublished, confidential, and proprietary information of Cincom. No
disclosure or use of any portion of the contents of these materials may be made without the express
written consent of Cincom.

The following are trademarks, registered trademarks, or service marks of Cincom Systems, Inc.:

AD/Advantage®
C+A-RE™
CINCOM®
Cincom Encompass®
Cincom Smalltalk™
Cincom SupportWeb®
CINCOM SYSTEMS®

gOOi™

iD CinDoc™
iD CinDoc Web™
iD Consulting™
iD Correspondence™
iD Correspondence Express™
iD Environment™
iD Solutions™
intelligent Document Solutions™
Intermax™

MANTIS®
Socrates®
Socrates® XML
SPECTRA™
SUPRA®
SUPRA® Server
Visual Smalltalk®
VisualWorks®

All other trademarks are trademarks or registered trademarks of:

Acucobol, Inc.
AT&T
Compaq Computer Corporation
Data General Corporation
Gupta Technologies, Inc.
International Business Machines Corporation
JSB Computer Systems Ltd.

Micro Focus, Inc.
Microsoft Corporation
Systems Center, Inc.
TechGnosis International, Inc.
The Open Group
UNIX System Laboratories, Inc.

or of their respective companies.

Cincom Systems, Inc.
55 Merchant Street
Cincinnati, OH 45246-3732
U. S. A.

PHONE: (513) 612-2300
FAX: (513) 612-2000
WORLD WIDE WEB: http://www.cincom.com

Attention:

Some Cincom products, programs, or services referred to in this publication may not be available in all
countries in which Cincom does business. Additionally, some Cincom products, programs, or services
may not be available for all operating systems or all product releases. Contact your Cincom
representative to be certain the items are available to you.

http://www.cincom.com

Release information for this manual
AD/Advantage MANTIS Language, OS/390, VSE/ESA, P39-5002-00, is
dated October 30, 2001. This document supports Release 5.5.01 of
MANTIS.

We welcome your comments

We encourage critiques concerning the technical content and
organization of this manual. At your convenience, please take the survey
provided with the online documentation.

Cincom Technical Support for AD/Advantage

All customers Web: http://supportweb.cincom.com
U. S. A. customers Phone: 1-800-727-3525
 FAX: (513) 612-2000

Attn: AD/Advantage Support
 Mail: Cincom Systems, Inc.

Attn: AD/Advantage Support
55 Merchant Street
Cincinnati, OH 45246-3732
U. S. A.

Customers outside U. S. A. All: Visit the support links at
http://www.cincom.com to find
contact information for your nearest
Customer Service Center.

http://supportweb.cincom.com/
http://www.cincom.com/

MANTIS Language v

Contents

About this book xiii
Using this document ... xiii

Document organization.. xiii
Revisions to this manual..xiv
Conventions..xv

MANTIS documentation series... xviii
Educational material ..xix

Overview of MANTIS language 21
Text considerations .. 22
Symbolic names ... 24
Numeric considerations.. 27
DBCS considerations ... 29
Signing on to MANTIS .. 29

MANTIS conventions 31
Programming fundamentals ... 31

Automatic mapping.. 33
Statements .. 36
Commands .. 38
Comments ... 39

Numeric data .. 41
Numeric literals and variables ... 41
Scientific notation (E-notation)... 42
Arithmetic arrays.. 44
Arithmetic expressions .. 45

Text data... 50
Text literals and variables.. 50
Text expressions ... 55
Relational text expressions.. 58

DBCS considerations ... 62
Built-in functions ... 63

Contents

vi P39-5002-00

MANTIS programming language 75
MANTIS language summary...76
ABS ...86
ACCESS ...87
ASI ..93
ATN...94
ATTRIBUTE ..95

ATTRIBUTE (Function)..95
ATTRIBUTE (Statement) ...102

BIG ..134
BREAK ..136
CALL ...137
CHAIN ...139
CHR ..144
CLEAR ..145
COMMIT..149
COMPONENT...153
CONVERSE..157

General considerations ..160
COS ..164
CSIOPTNS..165
CURSOR...171
DATAFREE...176
DATE (Function) ...177
DATE (Statement)...179
DBCS (Statement)(Kanji users only)...181
DELETE ..183

DELETE (External file) ...183
DELETE (MANTIS file) ..189
DELETE (Personal computer file)..194
DELETE (RDM logical view) ..197
DELETE (TOTAL file view) ..200

DEQUEUE ..203
DO...206
DOLEVEL..209
E..210
ENQUEUE ..211
ENTRY-EXIT...213
EXEC_SQL-END ..217
EXIT (Command) ..219
EXP...220
FALSE...221
FILE...222
FOR-END..226
FORMAT...230
FSI...232

Contents

MANTIS Language vii

GET .. 234
GET (External file) ... 234
MANTIS external VSAM KSDS nonunique alternate key processing 244
GET (MANTIS file) .. 249
GET (Personal computer file).. 254
GET (RDM logical view) .. 259
GET (TOTAL file view) .. 265

HEAD.. 270
HELP .. 272
IF-ELSE-END ... 274
INSERT .. 277

INSERT (External file) ... 277
INSERT (MANTIS file)... 280
INSERT (Personal computer file) .. 283
INSERT (RDM logical view) .. 287
INSERT (TOTAL file view) .. 291

INT.. 294
INTERFACE ... 295
KANJI (Kanji users only)... 298
KEY... 301
KILL .. 303
LANGUAGE (Function) .. 305
LANGUAGE (Statement).. 306
LET (Numeric (BIG/SMALL) variables) .. 308
LET (TEXT/KANJI/DBCS variables)... 312
LOG .. 320
LOWERCASE .. 321
LUID ... 323
MARK (SUPRA RDM users only) ... 324
MIXD... 327
MIXM .. 328
MIXMODE .. 329
MIXT ... 331
MODIFIED .. 332
NEXT .. 335
NOT .. 336
NULL .. 338
NUMERIC... 339
OBTAIN .. 341
ORD.. 343
OUTPUT... 344
PAD .. 346
PASSWORD .. 349

Contents

viii P39-5002-00

PERFORM ..350
PERFORM transfers control to another program without passing program
variables...353
PERFORM transfers control to an external program without a return356
PERFORM transfers control to another program and saves MANTIS
context without a return ..358
PERFORM starts a MANTIS program as a background task......................361
PERFORM starts a non-MANTIS program as a background task366

PI...367
POINT ...368
PRINTER (Function) ...370
PRINTER (Statement) ..371
PROGFREE..372
PROGRAM..373
PROMPT...376
RELEASE (Function) ..378
RELEASE (Statement)..380
REPLACE ...383
RESET ..387
RETURN ...388
RND ..389
RUN ..391
SCREEN ...393
SCROLL..396
SEED ..398
SGN ..399
SHOW...400
SIN ..403
SIZE ..404
SLICE..410
SLOT...413
SMALL ..415
SOURCE...417
SQLCA (Function)...420
SQLCA (Statement) ..424
SQLDA (Function)...426

Read header elements...426
Read repeating elements...429

SQLDA (Statement) ..432
Allocate an SQLDA ..432
Deallocate an SQLDA..435
Set header information...438
Set repeating element information ...444

SQR ..451
STOP ..452
TAN...454

Contents

MANTIS Language ix

TERMINAL ... 455
TERMSIZE ... 456
TEXT .. 457
TIME (Function).. 460
TIME (Statement) ... 462
TOTAL.. 464

TOTAL (TOTAL and SUPRA PDM users only) ... 464
TRAP .. 469
TRUE.. 472
TXT... 473
UNPAD ... 474
UNTIL-END .. 478
UPDATE ... 479

UPDATE (External file).. 479
UPDATE (MANTIS file) ... 483
UPDATE (Personal computer file)... 486
UPDATE (RDM logical view) ... 488
UPDATE (TOTAL file view) ... 491

UPPERCASE.. 493
USAGE ... 495
USER.. 497
USERWORDS.. 498
VALUE.. 499
VIEW .. 501
VSI.. 505
WAIT .. 506
WHEN-END.. 508
WHILE-END ... 510
ZERO.. 512

Dissimilarity debugging 513

MANTIS reserved words 515

Contents

x P39-5002-00

Status functions 517
RDM status functions..517

Function Status Indicators ...518
Attribute Status Indicators ..519
Validity Status Indicators..520

Extended status messages for MANTIS and external files.......................................521
File status codes and messages..522
CICS MANTIS FSI message text descriptions for internal and
external files or views...524
MANTIS for batch FSI message text descriptions for internal and
external files or views..525
PC CONTACT FSI message text descriptions for internal and
external files ...526

Advanced programming techniques 527
External DO...527

Using external DO..530
Parameter passing...531
Program architecture ...531
Internal DO vs. external DO vs. CHAIN ...533
External DO programming guidelines ..538

VSAM deadlocks...550
VSAM Files ..550
Deadlocks on GET NEXT ..551
Rules for avoiding deadlocks ...553

Enhanced screen and program design 555
Designing screens...556
Building a map set in your program ..561

The CONVERSE statement and mapping examples563
Multiple images of a single screen design ...567

Windowing ..569
Window mode ..571

Clearing a map..574
Clearing a map set...575

Advanced editing...578

Contents

MANTIS Language xi

Mixed-data support 579
Using mixed-data in your program ... 580
Using mixed-data in screen design .. 581

Heading fields.. 582
Screen design output and input and SO/SI pairs .. 583

Mixed-data expressions.. 585
MIXMODE statement .. 585
Literals and variables... 585
Concatenation ... 586
Deconcatenation.. 587
Subscripts.. 588
Literals and mixed-data expressions... 589

Built-in functions ... 590
SIZE... 590
POINT.. 591
MIXM ... 591
MIXD.. 592
MIXT .. 592

Statements and commands.. 593
LET .. 593
SHOW ... 594
ATTRIBUTE .. 595
PAD ... 595
UNPAD .. 596

Glossary of terms 597

Index 615

Contents

xii P39-5002-00

MANTIS Language xiii

About this book

Using this document
MANTIS is an application development system that consists of design
facilities (e.g., screens and files) and a programming language. This
manual describes the commands, functions, and statements of the
language as well as some code examples.

Document organization
The information in this manual is organized as follows:

Chapter 1—Overview of MANTIS language
Provides an overview of MANTIS programming language and the
content of this manual.

Chapter 2—MANTIS conventions
Discusses MANTIS language conventions.

Chapter 3—MANTIS programming language
Describes the MANTIS programming statements, commands, and
functions in alphabetical order, including the CEF statements.

Appendix A—Dissimilarity debugging
Defines the types of dissimilarity and suggests how you can locate
and correct these errors.

Appendix B—MANTIS reserved words
Contains lists of reserved words as they were added with each new
release of MANTIS.

About this book

xiv P39-5002-00

Appendix C—Status functions
Describes the meanings of several types of statuses that are
returned by the status indicators FSI (Function Status Indicators), ASI
(Attribute Status Indicators), and VSI (Validity Status Indicators).

Appendix D—Advanced programming techniques
Presents advanced programming techniques that combine more than
one statement.

Appendix E—Enhanced screen and program design
Describes the MANTIS Screen Design Facility, which enables you to
design and save screens for use in your application.

Appendix F—Mixed-data support
Provides information on mixed-data—data streams composed of any
combination of SBCS (Single-Byte Character Set), such as EBCDIC
and DBCS (Double-Byte Character Set).

Glossary of terms

Index

Revisions to this manual
For release 5.5.01, Cincom added the LUID built-in function. For more
information on this function, see the table under “Built-in functions” (the
table starts on page 63).

About this book

MANTIS Language xv

Conventions
The following table describes the conventions used in this document
series:

Convention Description Example
Constant width
type Represents screen images and

segments of code.
Screen Design Facility
GET NAME LAST
INSERT ADDRESS

Yellow-
highlighted, red
code or screen
text

Indicates an emphasized section of
code or portion of a screen.

00010 ENTRY COMPOUND
00020 .SHOW"WHAT IS THE

CAPITAL AMOUNT?"
00030 .OBTAIN INVESTMENT
00040 EXIT

Slashed b (b/) Indicates a space (blank).
The example indicates that a
password can have a trailing blank.

WRITEPASSb/

Brackets [] Indicate optional selection of
parameters. (Do not attempt to
enter brackets or to stack
parameters.) Brackets indicate
one of the following situations.

 A single item enclosed by brackets
indicates that the item is optional
and can be omitted.
The example indicates that you can
optionally enter a program name.

COMPOSE [program-name]

 Stacked items enclosed by
brackets represent optional
alternatives, one of which can be
selected.
The example indicates that you can
optionally enter NEXT, PRIOR,
FIRST, or LAST. (NEXT is
underlined to indicate that it is the
default.)

�
�
�
�

�

�

�
�
�
�

�

�

LAST

FIRST

PRIOR

NEXT

About this book

xvi P39-5002-00

Convention Description Example
Braces { } Indicate selection of parameters.

(Do not attempt to enter braces or
to stack parameters.) Braces
surrounding stacked items
represent alternatives, one of
which you must select.
The example indicates that you
must enter FIRST, LAST, or a
value for begin.

�
�

�
�

�

�
�

�
�

�

LAST

FIRST

begin

Underlining
(In syntax)

Indicates the default value supplied
when you omit a parameter.
The example indicates that if you
do not specify ON, OFF, or a row
and column destination, the system
defaults to ON.

[][] �
�
�

�

�

�
�
�

�

�

colrow ,

OFF

ON

 SCROLL

 Underlining also indicates an
allowable abbreviation or the
shortest truncation allowed.
The example indicates that you can
enter either PRO or PROTECTED.

PROTECTED

Ellipsis points... Indicate that the preceding item
can be repeated.
The example indicates that you can
enter (A), (A,B), (A,B,C), or some
other argument in the same
pattern.

(argument,...)

About this book

MANTIS Language xvii

Convention Description Example
UPPERCASE Indicates MANTIS reserved words.

You must enter them exactly as
they appear.
The example indicates that you
must enter CONVERSE exactly as
it appears.

CONVERSE name

Italics Indicate variables you replace with
a value, a column name, a file
name, and so on.
The example indicates that you can
supply a name for the program.

COMPOSE [program-name]

Punctuation
marks

Indicate required syntax that you
must code exactly as presented.
() parentheses
. period
, comma
: colon
; semicolon
' single quotation mark
" " double quotation marks

LET ()
() ROUNDED() = v i
i , j n e1 , e2, e3. . .

About this book

xviii P39-5002-00

MANTIS documentation series
MANTIS is an application development system designed to increase
productivity in all areas of application development, from initial design
through production and maintenance. MANTIS is part of AD/Advantage,
which offers additional tools for application development. Listed below
are the manuals offered with MANTIS in the IBM® mainframe
environment, organized by task. You may not have all the manuals listed
here.

MASTER User tasks

♦ MANTIS Installation, Startup, and Configuration, MVS/ESA, OS/390,
P39-5018

♦ MANTIS Installation, Startup, and Configuration, VSE/ESA, P39-5019

♦ MANTIS Administration, OS/390, VSE/ESA, P39-5005

♦ MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004*

♦ MANTIS Administration Tutorial, OS/390, VSE/ESA, P39-5027

♦ MANTIS XREF Administration, OS/390, VSE/ESA, P39-0012

General use

♦ MANTIS Quick Reference, OS/390, VSE/ESA, P39-5003

♦ MANTIS Facilities, OS/390, VSE/ESA, P39-5001

♦ MANTIS Language, OS/390, VSE/ESA, P39-5002

♦ MANTIS Program Design and Editing, OS/390, VSE/ESA, P39-5013

♦ MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004*

♦ AD/Advantage Programming, P39-7001

♦ MANTIS DB2 Programming, OS/390, VSE/ESA, P39-5028

About this book

MANTIS Language xix

♦ MANTIS SUPRA SQL Programming, OS/390, VSE/ESA, P39-3105

♦ MANTIS XREF, OS/390, VSE/ESA, OpenVMS, P39-0011

♦ MANTIS Entity Transformers, P39-0013

♦ MANTIS DL/I Programming, OS/390, VSE/ESA, P39-5008

♦ MANTIS SAP Facility, OS/390, VSE/ESA, P39-7000

♦ MANTIS WebSphere MQ Programming, P39-1365

♦ MANTIS Application Development Tutorial, OS/390, VSE/ESA, P39-
5026

Manuals marked with an asterisk (*) are listed twice because you use
them for both MASTER User and general tasks.

Educational material
AD/Advantage and MANTIS educational material is available from your
regional Cincom education department.

About this book

xx P39-5002-00

MANTIS Language 21

1
Overview of MANTIS language

MANTIS is a comprehensive application development system designed
to increase productivity in all areas of application development—from
initial design through production. MANTIS offers design facilities,
prototyping capabilities, testing and debugging tools, and an advanced,
high-level programming language. All MANTIS facilities are completely
interactive. This means that once a program, screen, or file, for example,
is created it is immediately available for display and review by end users.
This eliminates the need for precompiling, compiling, binding, coding Job
Control Language and other activities normally associated with
application development.

This manual discusses the MANTIS programming language that you use
to write your applications. This is not a manual about how to program.
Instead, this manual provides the basics of the MANTIS programming
language for you to apply to your current level of programming
knowledge. The manual is divided into three chapters. “Overview of
MANTIS language” on page 21 introduces the basic considerations of the
MANTIS language such as how it handles text, numeric, and DBCS data.
“MANTIS conventions” on page 31 takes these topics, describes them in
more detail, and introduces the built-in functions of MANTIS. “MANTIS
programming language” on page 75, representing the bulk of the manual,
presents each command, function, and statement (in alphabetical order)
with its syntax, format, and any special considerations. This alphabetical
listing is the main reference point for most users. (For information on
using the Program Design Facility and the editing commands you can
use to modify your programs, refer to MANTIS Program Design and
Editing, OS/390, VSE/ESA, P39-5013.)

Chapter 1 Overview of MANTIS language

22 P39-5002-00

Text considerations
The MANTIS character set consists of:

♦ Alphabetic characters A–Z

♦ Space character

♦ Numeric digits 0–9

♦ Special characters, as listed in the following table

The following table describes MANTIS special characters and the
purpose of each as it is used:

Character Purpose

The hash character designates data fields in Screen
Design. May be user-defined.

“ Double quotes enclose a text literal. (Can vary in
some countries.)

‘ A single quote (apostrophe) marks a continuing line in
programming mode.

() Parentheses appear in arithmetic or text expressions
and in the FILE, SCREEN, PROGRAM, ACCESS,
VIEW, INTERFACE, and other library statements for
naming conventions.

: A colon separates two programming statements on
the same line. A colon can also separate a library
from an entity name.

; A semicolon indicates the suppression of tabbing on
an unformatted screen. See “SHOW” on page 400 for
an explanation.

, A comma separates parameters and subscripts, and
indicates tabbing on an unformatted screen.

. A period designates a decimal point in a number. (It is
the default decimal point for screen fields, which can
be changed by users.)

_ An underline connects two or more words in a
symbolic name.

Text considerations

MANTIS Language 23

Character Purpose
| A vertical bar marks a comment line in programming

mode. In Screen Design, it is the default blank-fill
character. It can be used to tie together fields (e.g.,
words in a heading) into a single field or to indicate
automatic skipping (tabbing) between fields.

! An exclamation point marks a Double Byte Character
String (DBCS) comment.

+ A plus sign adds two numeric data items or
concatenates two character data items.

- A minus sign subtracts two numeric data items or
deconcatenates two character data items. Special
note: Do not use a minus sign or dash between two
words in a file name (e.g., file-name), or MANTIS tries
to subtract the values.

* An asterisk multiplies two data items.
** A double asterisk raises one number to the power of

the second number.
/ A slash divides one number by the value of the

second number.
= An equal sign evaluates an expression to TRUE if

both sides are equal; otherwise, it evaluates to
FALSE. In a LET statement an equal sign sets the
expression(s) on the left hand side to the
expression(s) on the right hand side. This character is
also used for the ATTRIBUTE, and PRINTER, DATE,
and TIME functions (that is the LET.)

@ The at sign is used by the Component Engineering
Facility to recognize a source program when found as
suffix to a MANTIS program name. Also used to
nominate a component to be broken out in the
Decompose process. May be user-defined.

Chapter 1 Overview of MANTIS language

24 P39-5002-00

Symbolic names
A symbolic name is a string of characters that represents a user-defined
object (such as a screen or field) in a MANTIS program. MANTIS uses
symbolic names to represent variables processed by a MANTIS program.
Symbolic names can stand for either numeric or text data. MANTIS
allows a maximum of 2048 symbolic names for a single program,
including names defined indirectly by SCREEN, FILE, and ACCESS
statements.

A symbolic name:

♦ Must begin with an alphabetic character.

♦ Can contain alphabetic characters, numeric characters, and the
underline (_). No other special characters are allowed in a symbolic
name. Lowercase characters can be entered; MANTIS will convert
them to uppercase (e.g., the following variables are equivalent:
customer_name, Customer_Name, CUSTOMER_NAME).

♦ Must not be a reserved word, as listed later in this section. A
symbolic name can contain a reserved word (e.g., EDITOR), but
cannot be a reserved word in its entirety (e.g., EDIT).

♦ Can be any size that fits on a line. However, if the field is used in a
design entity, (e.g., screens, interfaces, or files) it is limited to 16 or
30 characters.

♦ When MANTIS executes an ACCESS, FILE, INTERFACE, SCREEN,
TOTAL, or VIEW statement (a complex statement), MANTIS defines
the symbolic name specified in the statement. MANTIS also defines
all of the as-yet undefined fields that you have in the design of that
object.

♦ Must be unique. When a symbolic name is previously defined,
MANTIS bypasses the subsequent definition. However, with
complex statements such as ACCESS, MANTIS checks the
subfield’s current and new datatype for consistency.

MANTIS automatically converts all symbolic names and reserved words
to uppercase in your program.

MANTIS reserves certain words for command names, built-in functions,
and other features of the language.

If you use the PREFIX option on a complex statement, the variable name
will be appended to the complex entity name to form a symbolic name.

Symbolic names

MANTIS Language 25

The following is a list of MANTIS reserved words:

ABS AFTER ALTER ASI ATN
ACCESS ALL AND AT ATTRIBUTE

BEFORE BIG BIND BLOB ** BREAK
BY

CALL CHANGE CLEAR CONVERSE COS
CHAIN CHR COMMIT COPY CURSOR

DATAFREE *DBCS DECIMAL ** DELETE DISPLAY
DOLEVEL DATE DBPAGE ** DEQUEUE DO
DOWN

E END EQUAL EXEC_SQL EXIT
EDIT ENQUEUE ERASE EXECUTE EXP
ELSE ENTRY

FALSE FIRST FOR FORMAT FSI
FILE

G" GET GO **

HEAD HELP

IF INSERT INT INTEGER ** INTERFACE
INTERNAL

K" KANJI KEY

LANGUAGE LET LIST LOG LOWERCASE
LAST LEVEL LOAD LUID

MARK MIXD MIXMODE MIXT MODIFIED
MEMORY MIXM

Chapter 1 Overview of MANTIS language

26 P39-5002-00

NEW NEXT NOT NULL NUMERIC

OBTAIN ON OR ORD OUTPUT
OFF

PAD PERM ** POSITION PRIOR PROMPT
PASSWORD PI PREFIX PROGFREE PURGE
PERFORM POINT PRINTER PROGRAM

QUIT

RELEASE RESET RND ROUNDING RUN
REPLACE RETURN ROUNDED

SAME SELECT SHOW SLOT SQLDA
SAVE SEQUENCE SIN SMALL SQR
SCREEN SET SIZE SQLBIND STOP
SCROLL SGN SLICE SQLCA SUBMIT
SEED

TAN TERMSIZE TIME TOTAL TRUE
TERMINAL TEXT TO TRAP TXT

ULTRA UNTIL UPDATE USAGE USERWORDS
UNPAD UP UPPERCASE USER

VALUE VIA VIEW VSI

WAIT WHEN WHILE WINDOW

ZERO

** Reserved for future use

Numeric considerations

MANTIS Language 27

Numeric considerations
The MANTIS number set consists of:

♦ Digits 0–9

♦ Preceding plus or minus sign

♦ Period

♦ Letter E

Internally, MANTIS stores numeric data in floating point and regards
numbers in one of two ways:

♦ SMALL. Stores a four-byte floating-point number.

♦ BIG. Stores an eight-byte floating-point number.

Even if your installation uses a decimal point other than the period (.), for
example the comma (,) in user screens, you must use a period (.) for a
placeholder in the numbers in your programs.

You can also store numeric data in arrays. Arrays are ordered sets of
numbers that have one or two dimensions. You can specify arrays as
BIG or SMALL. For example, if you specify a 1-dimensional array:
BIG DATA(5)

Chapter 1 Overview of MANTIS language

28 P39-5002-00

MANTIS allocates storage for five BIG occurrences of DATA:

DATA(1) DATA(2) DATA(3) DATA(4) DATA(5)

If you specify a 2-dimensional array of two rows and five columns:
BIG DATA(2,5)

MANTIS allocates storage as (sometimes called “row major”):

DATA(1,1) DATA(1,2) DATA(1,3) DATA(1,4) DATA(1,5)

DATA(2,1) DATA(2,2) DATA(2,3) DATA(2,4) DATA(2,5)

See “MANTIS conventions” on page 31 for more detailed information on
scientific notation and numeric arrays.

You can also store text data in a 1-dimensional array using only the
TEXT statement. For example, if you specify:
10 TEXT DATA(3, 10)

MANTIS allocates storage as:

DATA(1) DATA(2) DATA(3)

where each DATA element has 10 bytes (characters) of storage available

DBCS considerations

MANTIS Language 29

DBCS considerations
MANTIS provides facilities to support the IBM and FUJITSU DBCS
character set. A DBCS character is a 2-byte text data type used on
special terminals (for Asian language support). More details on DBCS
support are provided in “DBCS considerations” on page 62. Double Byte
Character Set (DBCS) characters can also be stored in TEXT variables
using Shift-out and Shift-in (SO/SI) characters and the MIXMODE option
(see “MANTIS programming language” on page 75 and “Mixed-data
support” on page 579 for more information).

Signing on to MANTIS
Every MANTIS installation has a person (or persons) designated as
Master User. The Master User has access to certain facilities and
information not available to all MANTIS users. To sign on to MANTIS,
obtain the valid program name or transaction code, a valid user ID, and a
valid password from your Master User. When you enter the program
name or transaction code, the sign-on screen appears as shown in the
following screen illustration (unless your Master User has changed the
Cincom logo to another display):

SGN001 yyyy/mm/dd hh:mm:ss
M A N T I S

///// ///// 5501.007 CICS MANTIS
////////// ///////// Copyright 1986, 1987, 1992,

///////////// //////////// 1993, 1995, 1997, 1998, 2001
/////////////// ////////////// Cincom Systems, Inc.
//////////////// /////////////// All rights reserved.
///////////////// ////////////////
////////////////// /////////////////

5501.007 Design Facilities
////////////////// /////////////////
///////////////// ////////////////
//////////////// /////////////// User : :
/////////////// ////////////// Password : :
///////////// ////////////

////////// /////////
///// /////

In either case, enter your valid user ID and password and press ENTER.
Your Facility Selection menu appears and you are signed on to MANTIS.

Chapter 1 Overview of MANTIS language

30 P39-5002-00

The following screen illustration shows the standard facilities menu
provided with MANTIS. Your Master User may have omitted some of
these facilities, and/or added new facilities to meet your specific needs.
To access a facility from the menu, enter the number of the facility in the
selection field, and press ENTER.

FAC002 MANTIS Facility Selection Menu YYYY:MM:DD
user HH:MM:SS

Please select one of the menu options below.

___ Run a Program by Name 1 Sign On as Another User 11
Display a Prompter 2 Search Facility 12
Design a Program 3 Query Report Writer 13
Design a Screen 4 Directory Facility 14
Design a MANTIS File View .. 5 Transfer Facility 15
Design a Prompter 6 Cross Reference Facility ... 16
Design an Interface 7 Entity Transformers 17
Design a TOTAL File View ... 8 Universal Export Facility .. 18
Design an External File View 9 Print Facility 19
DL/I Access View 10

F1=HELP F3=END F12=CANCEL

For information on using the Program Design Facility and the Full Screen
Editor (FSE) to create and update programs, refer to MANTIS Program
Design and Editing, OS/390, VSE/ESA, P39-5013. For a discussion of
MANTIS programming conventions, see “MANTIS conventions” on
page 31.

MANTIS Language 31

2
MANTIS conventions

This chapter discusses MANTIS language conventions. The language
fundamentals discussed in “Overview of MANTIS language” on page 21
also apply here. It does not attempt to teach you how to program, but
rather outlines MANTIS basics which you can apply using your current
data processing knowledge. Short program sequences illustrate specific
aspects of MANTIS programming. You need not understand each
statement at this point. “MANTIS programming language” on page 75
provides details on MANTIS commands, functions, and statements.

Programming fundamentals
The three basic elements of MANTIS programming mode are as follows:

♦ Statements. Part of a program; requires a run-mode action—they
are not executed until the program is run (e.g., FILE, SCREEN).
MANTIS statements require a line number. MANTIS automatically
indents statements to indicate their relative position in the program’s
nesting hierarchy.

♦ Commands. Not a part of a program, but designate an immediate-
mode action—they are executed immediately (e.g., LIST, RUN).
Immediate-mode commands cannot have a line number.

♦ Editing commands. Part of the Full Screen Editor (FSE) and are
used to maintain MANTIS programs. For more information on using
the FSE refer to MANTIS Program Design and Editing, OS/390,
VSE/ESA, P39-5013.

Some of the MANTIS reserved words can be used as both statements
and commands (such as EXIT). Most MANTIS statements can be
entered without a line number and executed immediately (such as
SHOW and LET).

Chapter 2 MANTIS conventions

32 P39-5002-00

You don’t need to remember which reserved words are statements and
which are commands. MANTIS returns an error message if you omit a
line number on a statement or try to enter a line number on a command.

When you write a MANTIS program, you can use either the Full Screen
Editor or the Line Editor (see Note below). The Full Screen Editor
provides the entire screen (254 columns wide) for creating and
maintaining programs. The Line Editor provides a line at the bottom of
the screen for you to enter program statements and commands.
MANTIS scrolls previously entered lines up and repositions the cursor on
the bottom line each time you press ENTER.

You can run a partial or completed program at any point by entering the
RUN command. Your program executes from the first to the last coded
statement. MANTIS interprets programs as they run; with no compiler
and no object code. MANTIS first checks the logical structure of your
program to ensure matched statements, such as IF-END, ENTRY-EXIT.

You can save a program that is not logically complete (such as missing
an END statement), but the program must be logically balanced to RUN
it. Refer to the SAVE command in MANTIS Facilities, OS/390, VSE/ESA,
P39-5001.

If MANTIS encounters an error in a running application, it returns the
name of the program as well as the line number where the error was
found. MANTIS terminates a program when any of these occur:

♦ MANTIS executes a STOP statement.

♦ MANTIS executes the EXIT associated with the ENTRY statement of
the program.

♦ No more statements to process (physical end of program).

♦ MANTIS encounters an error.

♦ The KILL command (or its equivalent as specified by the Master
User) is entered in response to terminal input.

Refer to MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004,
for warnings and error messages you might receive in the programming
process.

Programming fundamentals

MANTIS Language 33

Automatic mapping
Automatic mapping is the process that MANTIS uses to allow the sharing
of data areas between variables of like name and data type. For
example, CUST_NAME defined as a text field found on a screen can
share the same memory location as a text field in a file called
CUST_NAME. This mapping occurs automatically whenever an already
defined name is encountered. We recommend that you use standard
naming conventions on a system-wide basis to make the best use of this
feature.

Using the PREFIX parameter in the FILE, ACCESS, and TOTAL
statements inhibits automatic mapping. See “FILE” on page 222 and
“Automatic mapping” on page 541 for more information.

Advantages of automatic mapping
If you have programs with large numbers of LET statements to move
fields between different areas (e.g., screens and files), the use of
automatic mapping can reduce the complexity and chance for errors in
your program, and also reduce the CPU usage and memory
requirements of your program. With many languages such as COBOL,
the programmer defines the memory locations for screen and file
variables separately. When data is read, moved, and written, there can
be a considerable use of memory and CPU usage. This is not the case
with MANTIS. Automatic mapping saves coding time, memory, and CPU
usage.

Chapter 2 MANTIS conventions

34 P39-5002-00

The following figure shows a comparison between COBOL and MANTIS:

 MANTIS FILE/PANEL COBOL FILE/PANEL

CUST_ENTRY Panel CUST_ENTRY PanelCUST File CUST File

MANTIS Prog. DATA AREA COBOL Prog. WORK AREA
PCustName
PCustAddr
PCustCity
PCustStat
PCustFone

DATA DIV.
01 FA

02FCustName
02FCustAddr
02FCustCity
02FCustStat

02FCustFone
01 PA

PROCEDURE DIV.
:

CALL DATABASE
MOVE FA TO PA
WRITE SCREEN
READ SCREEN
MOVE PA TO FA
CALL DATABASE

:

ENTRY CUSTUPD
.ACCESS REC("...
.SCREEN MAP("...
.GET REC
.CONVERSE MAP
.UPDATE REC
EXIT

CustName : :
CustAddr : :
CustCity : :
CustStat : :
CustFone : :
CustZip : :

CustName : :
CustAddr : :
CustCity : :
CustStat : :

CustFone : :
CustZip : :

CustName
CustAddr
CustCity
CustStat

CustFone
CustZip

CustName
CustAddr
CustCity
CustStat
CustFone
CustZip

CustName
CustAddr
CustCity
CustStat

CustFone
CustZip PCustZip

FCustName
FCustAddr
FCustCity
FCustStat
FCustFone
FCustZip

02PCustName
02PCustAddr
02PCustCity
02PCustStat

02PCustFone
02PCustZip

02FCustZip

With automatic mapping, variables
with the same names and data types
share the same memory location in
the DATA AREA, eliminating the
required by a language like COBOL,
and reducing memory and CPU usage.

Another benefit of automatic mapping
is a reduced DATA AREA, which when

iin pseudo-conversational mode,
further reduces CPU usage by rolling
a smaller work area.

With languages like
COBOL, file and
panel variables do
not normally share
the same memory
locations requiring
additional memory
storage and CPU
usage to move data.

Note: COBOL example is in pseudo-code.

Programming fundamentals

MANTIS Language 35

The advantage of using automatic mapping can be lessened if a standard
naming convention is not used throughout the shop. Since MANTIS does
duplicate definition checking only in certain situations (such as data type),
naming conventions should also include standards in text lengths. If this
convention is not followed, it is possible to have a field defined with two
different lengths. For example, it is possible to define a text field as 55
bytes long on a screen, and 35 bytes long in an ACCESS view. MANTIS
uses the first field length encountered when the program is run. That is,
if MANTIS encounters the ACCESS statement first, the data area is set
up with a length of 35 bytes for the field.

Most shops are database driven, and should always specify ACCESS,
VIEW, TOTAL, and FILE statements first in a MANTIS program to ensure
that the MANTIS program always uses the most current definition for a
field.

Another AD/Advantage product, XREF, can be used to check variables to
ensure standard naming, data type, and length consistency. Consistency
checking when setting up the data area allows you to use automatic
mapping to your best advantage.

Chapter 2 MANTIS conventions

36 P39-5002-00

Statements
A program statement consists of a line number (1 through 30000), a
MANTIS reserved word, and 0 or more operands, depending on the
statement. You can use spaces freely to make statements easier to
read. MANTIS ignores spaces except when they appear in text literals
and comment statements, or perform a delimiting function. For example,
the following two statements have the same meaning to MANTIS:
10 SHOW ALPHA, BETA, - 1500+ 7

20 SHOW ALPHA,BETA, -1500 + 7

If you list these statements, MANTIS removes all unnecessary blanks
and inserts necessary blanks, as follows:
LIST

10 SHOW ALPHA,BETA,-1500+7

20 SHOW ALPHA,BETA,-1500+7

When you list a program, periods (.) can appear between the statement
number and the statement. If you set your User Profile to Indent On in
the Full Screen Editor (FSE), MANTIS inserts these periods automatically
to show your program’s nesting hierarchy. You need not supply periods
when you enter statements.
LIST

15SHOW ALPHA,BETA,-1500+7

16SHOW ALPHA,BETA,-1500+7

Program lines created using the FSE can contain up to 254 characters.
Use the FSE scrolling function to move your terminal window to the right
and continue your program line past your current terminal width. With the
Line Editor, you can create program lines as wide as your terminal. (See
note below regarding Line Editor usage.)

In either mode, if you need more characters on the line than the screen
holds, continue a line by entering an apostrophe (’) immediately after the
next line number. When you press ENTER, MANTIS displays the line with
a space between the line number and the apostrophe.

10 SHOW "THE RELATIVE HUMIDITY IS " ;HMD; "AND THE TEMPERATURE IS ";

20 'TEMP

Programming fundamentals

MANTIS Language 37

Do not break up a reserved word, a symbolic name (for example, TEMP),
or a number (for example, 12345.67). Both of the following continuation
attempts are incorrect:

10 SHOW "THE RELATIVE HUMIDITY IS ";HMD;"AND THE TEMPERATURE IS " ; TE

20 'MP

30 SHOW "THE RELATIVE HUMIDITY IS ";HMD;"AND THE POLLEN COUNT IS ";123

40 '45.67

If you are using the Line Editor and a listed line’s length or indentation
cause it to exceed your terminal width, MANTIS shows a plus sign (+) as
the character right after the line number. The plus sign (+)can also
appear when you create a long line in the FSE and then list the program
in the Line Editor. When the plus sign appears in this way, it has nothing
to do with nesting.

To display the rest of the line, you may be able use the ALTER
command. Lines that exceed 72 characters will not be able to be listed
or altered in the line editor. These lines can be created and changed in
the Full Screen Editor, by scrolling to the right to view the rest of the line.
In the Full Screen Editor, MANTIS does not display a plus sign.

If you have a long literal (text enclosed in quotes) and want the entire line
to show on a single screen, close the literal on the first line (closing ") and
reopen it (opening ") on the continuation line:
60 SHOW "THIS IS THE WEATHER REPORT FOR ALL REGIONS SOUTH AND "

70 '"SOUTHWEST OF CHICAGO"

With the Full Screen Editor, you can also scroll to the right and continue
the line, or use the procedure previously described.

Cincom recommends that you do not use the Line Editor (available with
earlier MANTIS versions) with the Program Design Facility. The Line
Editor does not update the Extended Entity Profile Records (EEPR) of
the program, needed in order for the Program Design Facility to function
properly. When you use the SAVE, REPLACE, DELETE, and BIND
commands with the Line Editor, program integrity can be affected. Each
time you access the Line Editor, you receive a message warning you of
this possibility. For information on using the Line Editor, refer to MANTIS
Program Design and Editing, OS/390, VSE/ESA, P39-5013.

Chapter 2 MANTIS conventions

38 P39-5002-00

You can include two or more statements on the same line by separating
them with a colon (:).
90 CLEAR:HEAD "THIS LINE APPEARS AT THE TOP OF YOUR SCREEN"

You cannot, however, include the following MANTIS verbs on a line with
another statement:

BREAK ENTRY IF UNTIL
DO EXIT NEXT WHEN
ELSE FOR RETURN WHILE
END

These statements (known as logic verbs) must appear on a line by
themselves.

Commands
A MANTIS command is a reserved word without a line number. Thus,
MANTIS does not consider a command to be part of your program and
executes it immediately. For example, you use commands to RUN or
LIST a program. You can execute some statements as commands by
entering them without a statement number. Again, such a statement is
not part of the coded program and MANTIS executes it immediately. In
the following example, SHOW appears as both a statement and a
command.

SHOW as a statement
In this example, SHOW appears as a statement:

EDIT L1 --- EXAMPLES:COMPOUND COLUMNS 1 73
COMMAND ===> run SCROLL ===> CUR
***** *************************** START OF PROGRAM ****************************
00010 ENTRY COMPOUND
00020 .SHOW"WHAT IS THE CAPITAL AMOUNT?"
00030 .OBTAIN INVESTMENT
00040 EXIT
***** **************************** END OF PROGRAM *****************************

This results in:

WHAT IS THE CAPITAL AMOUNT?

1400

Programming fundamentals

MANTIS Language 39

SHOW as a command
In this example, SHOW appears as a command:

EDIT L1 --- 2050 COLUMNS 1 73
COMMAND ===> show investment+650 SCROLL ===> CUR
***** *************************** START OF PROGRAM ****************************
00001 ENTRY COMPOUND
00002 .SHOW"WHAT IS THE CAPITAL AMOUNT?"
00003 .OBTAIN INVESTMENT
00004 EXIT
***** **************************** END OF PROGRAM *****************************

Comments
You can insert comments among your program statements by entering a
vertical bar (|) before your comment.
10 ENTRY COMPOUND

20 . | THIS IS AN EXAMPLE

30 .SHOW"WHAT IS THE CAPITAL AMOUNT?"

40 .OBTAIN INVESTMENT

50 EXIT

You can also include comments on the same line with a statement by
entering a colon (:), a vertical bar (|), and your comment after the
statement:
10 ENTRY COMPOUND:|THIS IS AN EXAMPLE

You can use all characters in the MANTIS character set in your
comments. Because MANTIS ignores comments when executing a
program except for SQL statement text, don’t put statements or
commands on the same line after a comment.

DBCS (Asian language support) comments are indicated by an
exclamation point (!). If you make a keying error and type an
exclamation point in your program line, MANTIS returns an error
message.

Chapter 2 MANTIS conventions

40 P39-5002-00

There are two special comment forms that affect spacing when printing a
program in the MANTIS Print Facility. Insert the following comments into
your program wherever you would like to add extra blank lines while
printing the program:

♦ | EJECT. Causes the print program to skip to the top of a new page.

♦ | SKIP

�
�
�

�

�

�
�
�

�

�

3
2
1

. Causes the print program to skip 1, 2, or 3 lines.

Numeric data

MANTIS Language 41

Numeric data
This section discusses the arithmetic considerations MANTIS uses in its
storage and manipulation of numeric data.

MANTIS stores numeric data in hexadecimal floating point. However,
you normally see data displayed in standard numeric notation. In
program lines, or if you use an unformatted screen and have a number
greater than 15 digits, MANTIS displays that number in scientific notation.
Your Master User may change the digit threshold at which numbers
display in E-notation (scientific notation).

Numeric variables defined in a program have an initial value of 0 (except
those passed to an ENTRY statement.)

Numeric literals and variables
MANTIS stores numerics as either literals or variables.

Numeric literals, or constants, can appear in your program as valid
MANTIS numbers; for example, 4, 1.43, 0.07, or 14E7. You may enter
numeric literals in a number of ways, but MANTIS will redisplay them in
its standard way—for example, on SHOW or in a program LIST.
Numeric variables can contain numeric values that can be reassigned
during program execution. Examples of numeric variables and literals
are:
X=4

Y=1.43

Z=0.07

I=X

You can define a numeric variable in a program in the following ways:

♦ With a BIG or SMALL statement (see “Scientific notation (E-
notation)” on page 42). The variable is initially 0.

♦ With numeric field definitions in a SCREEN, FILE, INTERFACE,
TOTAL, ACCESS, or VIEW statement. The variable is initially 0.

Chapter 2 MANTIS conventions

42 P39-5002-00

♦ As a parameter on the program’s main entry statement where the
argument passed was BIG or SMALL. The variable has the BIG or
SMALL definition and the value of the invoking program’s parameter.

♦ With an as-yet undefined variable in a statement. It will default to a
BIG with a 0 value. For example, the following two code samples are
the same:

- Code sample 1:
10 BIG X,Y

20 X=Y+3

- Code sample 2:
10 X=Y+3

Scientific notation (E-notation)
MANTIS accepts 0 or any number with magnitude 1E-74 through 9E+73.
The letter E, in scientific notation, means “times 10 to the power of.” The
number after the E specifies how many places the decimal point shifts (to
the right if positive, to the left if negative). The number following the E
must be an integer. For example, you can write:

100 as .1E3 1.7640 as .1764E1

23000 as .123E5 .0004 as .4E-3

MANTIS may abend if a numeric statement causes an underflow or
overflow of the system’s floating-point limit.

MANTIS stores numbers as floating point native to the machine. The
nature of floating point results in some numbers being approximated. As
mentioned briefly in “Overview of MANTIS language” on page 21,
MANTIS stores numbers in one of the following ways:

♦ SMALL. SMALL variables can accurately represent integers from
-16777216 to +16777216 (about 1e7). Use SMALL for whole
numbers within this range.

♦ BIG. BIG variables can accurately represent integers from
-72057594037927936 to +72057594037927936 (about 7e16). Use
BIG to approximate any number containing fractions and whole
numbers whose magnitude exceeds 1e7.

Round-off errors can occur in calculations involving BIG and SMALL
numbers. Using the ROUNDED option will help maintain accuracy in
calculations.

Numeric data

MANTIS Language 43

Follow the convention of writing numbers in scientific notation. To do so,
remove all leading and trailing zeroes, then move the decimal point to the
left if a whole number or to the right if a fraction. The mantissa (the part
preceding the exponent E) must be between -1.0 and 1.0.

The following table gives several examples of E notation:

Original number E notation Comments

12 .12E2
1230000000 .123E10
-123E7 -.123E10
123E7 .123E10
.001 .1E-2
123.456 .123456E-3

Consider the following MANTIS program:
10 SMALL ALPHA,BETA

20 ALPHA=12300000000

30 BETA=1234567890

In statement 10, ALPHA and BETA are variables with a SMALL
significance. Both assignments will yield incorrect values because the
values exceed the capacity for a SMALL.

In such cases, use BIG to define your variables:
10 BIG ALPHA,BETA

20 ALPHA=12300000000

30 BETA=1234567890

Chapter 2 MANTIS conventions

44 P39-5002-00

You would not lose precision because a BIG can hold these numbers
accurately. When you write a program, remember to specify the degree
of precision your variables need by specifying either SMALL or BIG. If
you don’t specify either, MANTIS assumes BIG.

Because MANTIS stores numeric data in floating point, specify the
number of decimal digits that you want carried out when you perform a
calculation that results in a real number. For more details, see the
ROUNDED option of the LET statement.

For very large numbers or fractions there can be some loss of precision
based on the way the number is stored in the machine's native
hexadecimal floating point. Arithmetic operations, especially when
repeated, can accumulate precision-related differences in floating point
numbers.

Arithmetic arrays
An arithmetic array is an ordered set of numeric values. Each value is
called an array element. Arithmetic arrays can have one or two
dimensions. You can define arithmetic arrays with BIG or SMALL
statements, or with such statements as SCREEN, FILE, INTERFACE,
VIEW, TOTAL, or ACCESS if these definitions contain implied arrays.

“Overview of MANTIS language” on page 21 discussed how MANTIS
allocates memory to hold array elements. To access one element of an
array, specify its position within the array by subscripting the variable. A
subscript can be either a number or an arithmetic expression. For
example, if you have an array with 17 elements:
10 BIG ALPHA(17)

You can access an element within an array by entering ALPHA(n), where
ALPHA is the variable name and (n) is the subscript notation. To access
the eleventh element in an array, use any of the following notations:
ALPHA(11) or

K=11 : ALPHA(K) or

ALPHA(6+5) or

ALPHA(1)=9 : K=2 : ALPHA(ALPHA(1)+K)

Numeric data

MANTIS Language 45

The value you use to subscript an array must lie between 1 and the
maximum number of elements defined for the array (inclusive). If the
value lies outside this range, MANTIS returns a subscript out of range
error message. If, for example, you specify:
10 SMALL BETA(7,3)

20 BETA(6,4)=2

MANTIS issues an error message at statement 20 because the second
dimension (4) in statement 20 exceeds the maximum (3) defined for the
second dimension in statement 10.

Arithmetic expressions
An arithmetic expression in MANTIS consists of operands and operators.
You must separate each pair of operands with one operator. The
following table lists valid operands and an example of each type. The
next table then describes the valid operators that you use to separate the
operands described below.

Operands Example
Arithmetic Variables ZEBRA, BUCK

Array Elements A(5), C(2), X(Y+Z)

Built-in Functions SIN(Y), NOT(Z)

Numeric Constants 1.43, 0.07, 14E-7

Built-in Constants PI, E, FALSE, ZERO

Arithmetic Expressions in parentheses (4+SIN(Y))

Logic Expressions in parentheses (A = B)

An operator is a symbol with an arithmetic or logical function (e.g., +).

Chapter 2 MANTIS conventions

46 P39-5002-00

The following table contains all valid MANTIS numeric operators, a brief
description of their functions, and an example of each. In each example,
A and B represent operands. The preceding table outlines the valid types
of operands. Each pair of operands from the preceding table must be
separated by a valid operator from the following table. That is, you must
separate operands by operators, and you must separate operators by
operands or parentheses.

Symbol Meaning Example

+ or -
(leading)

Unary sign of A. +A or -A

+ Add A to B. A + B

- Subtract B from A. A - B

** Raise A to the power B. A ** B

* Multiply A by B. A * B

/ Divide A by B. Note that if B is equal to zero, MANTIS sets
the result to zero to avoid the error condition when dividing by
zero.

A / B

= If A and B have the same value, the expression evaluates to
TRUE, that is (1); otherwise, it evaluates to FALSE, that is,
(0). Also indicates the assignment of a value to a variable
(e.g., LET X=Y).

A = B

Numeric data

MANTIS Language 47

Symbol Meaning Example

< If the value of A is less than the value of B, the expression
evaluates to TRUE; otherwise, it evaluates to FALSE.

A < B

> If the value of A is greater than the value of B, the
expression evaluates to TRUE; otherwise, it evaluates to
FALSE.

A > B

<= If the value of A is less than or equal to the value of B, the
expression evaluates to TRUE; otherwise, it evaluates to
FALSE.

A <= B

>= If the value of A is greater than or equal to the value of B,
the expression evaluates to TRUE; otherwise, it evaluates
to FALSE.

A >= B

<> If the value of A does not equal the value of B, the
expression evaluates to TRUE; otherwise, it evaluates to
FALSE.

A <> B

AND If both operands are TRUE (that is, nonzero) the expression
evaluates to TRUE; otherwise, it evaluates to FALSE.

A AND B

(A=B) AND
(C=D)

OR If either operand (or both) is TRUE (nonzero), the
expression evaluates to TRUE; otherwise, it evaluates to
FALSE.

(A=B) OR
(C=D)

FLAG1 OR
FLAG2

Chapter 2 MANTIS conventions

48 P39-5002-00

The MANTIS programming language uses explicit operators, unlike
algebra, which uses implicit operators. For example:

Algebraic
Expression

MANTIS Expression

Comments

2a+b 2*A+B * is the
multiplication
operator.

2(b+c) 2*(B+C)
A+B
C+D

(A+B)/(C+D) Parentheses
indicate that A+B
and C+D are added
before the division.

b2-4ac B**2-4*A*C ** is exponentiation.
√b2-4ac SQR(B**2-4*A*C) Uses MANTIS

function SQR
(square root).

You can use the unary + and - operators only at the beginning of an
arithmetic expression or immediately after an opening parenthesis. For
example:

-ALPHA+GAMMA Valid
ALPHA/(-GAMMA) Valid
IF –ALPHA=GAMMA Valid
ALPHA/-GAMMA Invalid—one operator immediately follows another
ALPHA+-GAMMA Invalid—one operator immediately follows another
IF ALPHA=-GAMMA Invalid—one operator immediately follows another

The unary + operator has no effect on the evaluation of the expression.
The unary - operator changes the sign of the operand following it from
positive to negative, or to positive if the sign of the operand is already
negative.

Numeric data

MANTIS Language 49

MANTIS evaluates numeric and relational operators in the following
order:

Operator Precedence Description Example

() Expressions in
parentheses

(A+B)*C (the sum
of A and B is
multiplied by C)

UNARY (+, -) Unary operators -A

** Exponentiation
(to the power
of)

A**B

* / Multiply, divide A/B

+ - Add, subtract A-B

= < > >= <= <> Relational
operators

A<>B

AND Conjunction A AND B

OR Disjunction A OR B

When two operators have equal priority (for example, addition and
subtraction), and there are no parentheses, MANTIS evaluates the
expression from left to right.

You can add parentheses even when they are not needed, if you think
they make the expression clearer.

Use parentheses in arithmetic expressions to enclose subexpressions
that function as entities. MANTIS evaluates a subexpression in
parentheses first. For example, if you enter:
YEAR + DAY/(6*(MONTH-LAG))

MANTIS first subtracts LAG from MONTH, multiplies that result by 6,
then divides DAY by that new result, and finally adds YEAR to the result
of the division.

Chapter 2 MANTIS conventions

50 P39-5002-00

Text data
This section discusses the text considerations MANTIS uses when
storing and manipulating text data.

MANTIS stores text data in ordered character strings, each with an
associated current and maximum length. The maximum length can range
from 1 to 254 characters. The current length can range from zero to the
maximum length. Text data can include bytes of any hexadecimal value.
See “MIXMODE” on page 329 for exceptions.

Text variables defined in a program have an initial current length of zero.
The exception is those variables that are passed to an ENTRY statement
parameter.

Text literals and variables
MANTIS stores text as either literals or variables. Text literals and
variables can contain uppercase or lowercase letters, symbols, and so on
(they can contain any hexadecimal value).

A text literal is any set of 0–254 MANTIS characters enclosed in quotes;
for example, “THIS IS A TEXT LITERAL”. Use two consecutive quotes to
specify one occurrence of a quote mark within a text literal. For example,
if you run the following:
10 SHOW "THE ANSWER IS X","THE ANSWER IS ""Y"""

MANTIS returns:
THE ANSWER IS X THE ANSWER IS "Y"

The symbol used for the quote mark is different in some countries. If you
have trouble, consult your Master User for the proper character to use for
the quotes.

Text data

MANTIS Language 51

Defining text variables
You can define a text variable in a program in the following ways:

♦ With a TEXT statement. The variable is initially a zero-length string.
The default maximum length (if you do not specify a dimension on
the TEXT statement) is sixteen.

♦ With text definitions within a SCREEN, FILE, INTERFACE, TOTAL,
ACCESS, or VIEW statement. The variable is initially a zero-length
string.

♦ As a parameter on the program’s main entry statement where the
argument passed was TEXT. The variable has the TEXT definition
and the actual data length of the invoking program’s parameter.

The default for a variable is numeric (see BIG), so you must define text
variables before using them. If you specify:
10 TEXT DATA(3)

MANTIS allocates storage for a 3-character text variable:

DATA

TEXT variables can be treated as arrays of 1 byte each. This provides
for substringing. DATA(2,2) references the second through the second
character of DATA (for a length of 1).

If you specify TEXT DATA(2,4), MANTIS allocates storage for a list of
two variables that can contain up to four characters each:

DATA(1)

DATA(2)

A text variable cannot exceed 254 characters in length, while an array of
text variables cannot contain more than 255 entries.

Chapter 2 MANTIS conventions

52 P39-5002-00

When a text variable is defined, it has a current length of 0 (zero). A text
variable has the following characteristics:

♦ A defined length (or maximum length) as specified in the defining
statement.

♦ A current length maintained by MANTIS. The current length
indicates how many characters the text variable currently contains.

See the following examples:

Example Results Comments
TEXT ALPHA(20) ALPHA="" MANTIS creates

a field, ALPHA,
with a maximum
length of 20
characters and a
current length of
0 characters.

ALPHA="ITEM NUMBER" "ITEM NUMBER" ALPHA has a
current length of
11 characters.

SIZE(ALPHA) 11 Current length.
SIZE(ALPHA,"MAX") 20 Defined

(maximum)
length.

TEXT BETA(10)

BETA="12345678901234567890" "1234567890"
MANTIS
truncates the
expression to
the variable’s
defined length.

Text data

MANTIS Language 53

Substringing text variables
You can use subscripts to reference portions of a text variable. If, for
example, you enter:
10 TEXT MESSAGE(50)

20 MESSAGE="CUSTOMER NOT FOUND"

30| 123456789012345678 for position reference

then:

Example Results Comments
MESSAGE "CUSTOMER NOT FOUND" Current length

is 18
characters.

MESSAGE(10) "NOT FOUND" Position 10
through the
end of the
current length.

MESSAGE(10,12) "NOT" Positions 10
through 12 of
the string.

MESSAGE(19) "" Current length
is 18
characters.

MANTIS also uses negative subscripts to refer to the position within the
text variable, but references from the end of the current length of the
variable (when MESSAGE=“CUSTOMER NOT FOUND”):

Example Results Comments
MESSAGE(-1) "D" The last character.
MESSAGE(-5) "FOUND" The fifth-to-last

character through the
end of the current
length.

MESSAGE(-9,-7) "NOT" The ninth through
seventh characters
from the end of the
string.

Chapter 2 MANTIS conventions

54 P39-5002-00

If you refer to an array of text variables, the first subscript nominates the
entry; that is, if:
TEXT MESSAGE(6,16)

MESSAGE(6)="DUPLICATE RECORD"

then:

Example Results Comments
MESSAGE(6,1,3) "DUP" The sixth array

element, from positions
1 through 3.

MESSAGE(6,-6,-2) "RECOR" The sixth array
element, from the
sixth-to-last character
up to the second-to-
last character.

A subscript can also be an arithmetic expression. If, for example, you
enter:
10 TEXT MESSAGE(6,16)

20 MESSAGE(6)="UPDATE COMPLETE"

30 SHOW MESSAGE ((3*2),1,(1+5))

Line 30 goes through the following internal computational steps:
SHOW MESSAGE((3*2),1,1+5) that is equivalent

SHOW MESSAGE(6,1,6) to the text string: UPDATE

You can also substring a text variable on the left of an equal sign in an
assignment (LET) statement. See “LET (TEXT/KANJI/DBCS variables)”
on page 312. PAD and UNPAD statements can also operate on TEXT
variable substrings.

Text data

MANTIS Language 55

Text expressions
A text expression in MANTIS consists of operands and operators. You
must split up each pair of operands with one operator. The following
table lists valid operands and an example of each type. The next table
then describes the valid operators that you use to separate the operands
described below.

Operands Examples
Text variables GIRAFFE, DOE

Text variable substrings GIRAFFE(3,6), DOE(7),
DOE(-4,-2)

Array elements T(5), W(2), U(Y+Z)

Built-in functions KEY, PASSWORD,
POINT(S-"@"),
FORMAT(X,MASK)

Text constants (literals) "END", "Press ENTER"

Built-in constant NULL

Text expressions in parentheses (QUESTION+" ?")

Chapter 2 MANTIS conventions

56 P39-5002-00

The following table contains all valid MANTIS text operators, a brief
description of their functions, and an example of each. In each example,
A and B represent operands. The preceding table outlines the valid types
of operands. Each pair of operands from the preceding table must be
split up by a valid operator from the following table. That is, you must
separate operands by operators, and you must separate operators by
operands or parentheses:

Symbol Meaning Example

+ Add A to B. (Concatenate the text strings.) A + B

- Subtract B from A. (Remove the first occurrence of the string
in B—if there are any occurrences—from the string in A.)

A - B

= If A and B have the same value, the expression evaluates to
TRUE—that is, (1); otherwise, it evaluates to FALSE—that is,
(0). The same value indicates both the same current length
and the same contents for that length. It also indicates the
assignment of a value to a variable (for example., LET X=Y).
See the first note under the “Relational text expressions”
heading on page 58.

A = B

< If the value of A is less than the value of B, the expression
evaluates to TRUE; otherwise, it evaluates to FALSE.

A < B

> If the value of A is greater than the value of B, the expression
evaluates to TRUE; otherwise, it evaluates to FALSE.

A > B

<= If the value of A is less than or equal to the value of B, the
expression evaluates to TRUE; otherwise, it evaluates to
FALSE.

A <= B

>= If the value of A is greater than or equal to the value of B, the
expression evaluates to TRUE; otherwise, it evaluates to
FALSE.

A >= B

<> If the value of A does not equal the value of B, the
expression evaluates to TRUE; otherwise, it evaluates to
FALSE.

A <> B

Text data

MANTIS Language 57

Text addition (concatenation) and subtraction operators
In text addition (concatenation, the + operator) the right-hand operand is
concatenated at the position following the current length of the first
operand. When a text variable is assigned to an expression (for
example, in a LET Statement), MANTIS truncates the part of the
expression that exceeds the variable’s maximum length.

In text subtraction (extraction, the - operator), MANTIS removes only the
first occurrence of a string. You can repeat the operation to remove
multiple strings or multiple occurrences. If the first operand does not
contain the entire value of the second operand, the result is the entire first
operand; no partial subtraction takes place. For example:
TEXT A(20),B(10)

Example Results Comments
A="ACTIVE"

B="IN"+A

"ACTIVE"

"INACTIVE"

A="INACTIVE"

B="PENDING"

A=A+":"+B

"INACTIVE"

"PENDING"

"INACTIVE:PENDING"

A="INACTIVE"

B=A+"1234567890"

"INACTIVE"

"INACTIVE12"
Truncated to 10
(max size of B).

A=NULL

B=A+"1234567890"

""

"1234567890"

A="WEST MAIN AVE."

B=A+"1234567890"

"WEST MAIN AVE."

"WEST MAIN "
A fills up 10
characters of B.

A="INACTIVE"

A=A-"I"

"INACTIVE"

"NACTIVE"
Removes first
occurrence of “I”.

A="INACTIVE"

A=A-"I"-"IVE"

"INACTIVE"

"NACT"
Repeated
subtraction in left-
to-right order.

A="ACCOUNT"

B=A-"OO"

"ACCOUNT"

"ACCOUNT"
Entire “OO” string
does not exist in A;
no subtraction
done.

Also see the PAD and UNPAD statements for adding and removing more
than one occurrence of a character.

Chapter 2 MANTIS conventions

58 P39-5002-00

You can identify the presence of one string in another by using a text
expression that returns a numeric value as the argument of the built-in
text function POINT. If, for example:
TEXT VALID_KEYS

VALID_KEYS ="PF1,PF2,PF3"

A=POINT(VALID_KEYS-"PF3")

B=POINT(VALID_KEYS-"PF4")

MANTIS sets A to a value of 8 because “PF3” begins in the eighth
position of VALID_KEYS. MANTIS sets B to zero because “PF4” does
not appear in VALID_KEYS.

Relational text expressions
A relational text expression will evaluate to a numeric: 0 if FALSE and 1
if TRUE. So you can mix the numeric and text expressions in valid ways;
for example, to get K equal to 0 or 20, depending upon OPTION:
K=20*(OPTION="YES")

However, you cannot have a single operator between numeric and text
operands. For example, “OK”+4 is invalid.

MANTIS evaluates text operators in the following order:

Operator
precedence

Description

Examples

() Expressions in
parentheses

A-(B+C)

+, - Concatenation and
subtraction

A-B

A+"/"

=, >, <, >=, <=, <> Relational operators A=B

A<>B

When two operators, such as addition and subtraction, have equal
priority, and there are no parentheses, MANTIS evaluates the expression
from left to right.

You can add parentheses even when they are not needed, if you think
that they clarify the expression.

Text data

MANTIS Language 59

Use parentheses in text expressions to enclose subexpressions that
function as entities. MANTIS evaluates a subexpression in parentheses
first. For example, if you enter:
TEXT TRIAL,INVALID,EXCEPTIONS,OMIT

TRIAL="ABCD"

INVALID="CF"

EXCEPTIONS="C"

OMIT="A"

Example Results Comments
TRIAL+(INVALID-EXCEPTIONS) "ABCDF" Contents of

EXCEPTIONS extracted
from INVALID before the
result is added to TRIAL.

TRIAL+INVALID-EXCEPTIONS "ABDCF" Operations performed in
left-to-right order.

TRIAL+(INVALID-OMIT) "ABCDCF" Contents of OMIT is not
in INVALID, so no
extraction done.

TRIAL+INVALID-OMIT "BCDCF" Contents of TRIAL
added to INVALID before
the contents of OMIT
extracted from the result.

Chapter 2 MANTIS conventions

60 P39-5002-00

Lowercase and uppercase letters do not compare equally. If you want to
do a case insensitive compare, you can UPPERCASE (or LOWERCASE)
both expressions, for example:
A = "Invoice"

B = "INVOICE"

Example Results Comments
A=B FALSE (0) Case sensitive
A<>B TRUE (1) Case sensitive
UPPERCASE(A) =
UPPERCASE(B)

TRUE (1) Case insensitive

LOWERCASE(A) =
LOWERCASE(B)

TRUE (1) Case insensitive

The comparison of text expressions depends on how your Master User
has set up your system. Strings can be compared in the following ways:

1. Length before content (default behavior). Shorter strings compare
lower. For example, “Z” < “AAA”, since the first string is shorter. If the
operands are of equal current length, they are compared, character-
by-character, from left to right, until there is an inequality. For
example, “ANNA” < “ANNE”, because the E collates higher than the A
in the last position.

2. Content before length. For example, “Z” > “AAA” because Z follows
A in collating sequence. If the strings compare equal up to the length
of the shorter operand, the shorter operand compares less than the
longer one. For example, “DAN” < “DANIEL”.

3. By user exit. This allows site-specific comparisons for special
characters (for example, national language characters), case-
insensitive comparisons, or comparisons irrespective of trailing
blanks. For example, you may want “ö” to both compare equal to “oe”
and collate between “o” and “p”. This does not affect key order in files.

Text data

MANTIS Language 61

MANTIS truncates trailing blanks in input from VIEW, TOTAL,
ACCESS, and INTERFACE files (external files). This can affect
relational operations. Unless handled by the string compare exit,
trailing blanks are significant; that is, “HI” <> “HI ”.

Hexadecimal data can be stored and handled but not necessarily
displayed as intelligible data in a MANTIS text field.

Comparing nonalphabetic characters for anything other than equality
may make your code nonportable to other MANTIS platforms, due to
differences in EBCDIC vs. ASCII encoding and collating sequences.
The same applies to accented and native language characters.

Chapter 2 MANTIS conventions

62 P39-5002-00

DBCS considerations
MANTIS provides facilities to support the IBM DBCS character set. A
DBCS character is a Double Byte Character Set (DBCS) character used
with certain languages and on special terminals. DBCS data is
represented (both in screen design and programming mode) with percent
signs (%). DBCS characters can also be stored in TEXT variables with
Shift-out and Shift-in characters (SO/SI) and must be enabled with the
MIXMODE statement.

MANTIS stores DBCS data in ordered character strings, each with an
associated current length. The length can range from zero to 127
characters (an even number of bytes, from zero to 254). Most operations
work similarly to TEXT variables.

When you input DBCS data into an Internal Mixed field, use the (%)
percent sign in the following ways:

♦ Creation. When you are creating the field, type in an even number
of percent signs (%) representing the length of the field and press
ENTER.

♦ Extension. If you have an existing field and you want to extend it,
type in the percent signs (to make the total an even number) and a
plus sign as follows: %%%%+ and then press ENTER.

♦ Deletion. If you have an existing field that is too long, and you want
to eliminate some of the length, position the cursor on the first DBCS
character you want to delete and press the EOF (end of field) key.
MANTIS deletes the remaining characters in that field.

MANTIS recognizes the following special character sequences as DBCS
designators in programming mode:

! Identifies a DBCS comment (instead of the vertical bar).

G“ ” Indicates a mixed literal.

K“ ” Designates a DBCS literal. Percent signs (%) represent the screen
positions to be occupied by DBCS characters. The following is a
sample DBCS literal: K“ %%%%%%%% ”. MANTIS will convert the
% fields to DBCS characters and redisplay the line for DBCS input.

Built-in functions

MANTIS Language 63

Built-in functions
MANTIS contains numeric and text functions that are used to return
values within a program. The following table lists these functions along
with a brief description. In the descriptions, a represents any arithmetic
expression; k represents any DBCS expression; t represents any text
expression. Each function is documented separately (with an example)
in “MANTIS programming language” on page 75. The ASI, FSI, and VSI
functions are documented in “Status functions” on page 517. The
following table also describes the type of input and output used by each
function and the type of function. An * indicates that no input is needed
by MANTIS.

Function Description Input Output Function
ABS(a) Returns the absolute

value of a.
Numeric Numeric Mathematical

ASI Indicates the status of a
field in a logical view.

Field
name

Text File Access

ATN(a) Returns the angle in
radians whose tangent
is a.

Numeric Numeric Mathematical

ATTRIBUTE Returns the current
status of field, map,
terminal, and printer
attributes.

Name or
Reserved
word

Text System

CHR(a) Returns a text value
consisting of the
character
corresponding to the
EBCDIC code specified.

Numeric Text String

COS(a) Returns the cosine of a
where a is in radians.

Numeric Numeric Mathematical

CURSOR Indicates whether
cursor appeared in a
specific field at the last
terminal I/O.

Field-
name

True/False System

Chapter 2 MANTIS conventions

64 P39-5002-00

Function Description Input Output Function
DATAFREE Returns the number of

bytes remaining in the
data area.

None Numeric System

DATE Returns a text character
string of the current
date.

None Text System

DOLEVEL Returns your current
level in an external
subroutine.

None Numeric System

E Returns the value of
natural e
(2.71828182845905).

None Numeric Mathematical

EXP(a) Returns the value of
natural e to the power of
a.

Numeric Numeric Mathematical

FALSE Returns the value zero. None Numeric Boolean
FORMAT Returns a text-string

conversion of a numeric
expression according to
a supplied edit mask.

Numeric
and text
string

Text System

FSI Indicates the status of a
file after an I/O (GET,
DELETE, INSERT, or
UPDATE).

File-name Text File Access

INT(a) Returns the integer
value of a.

Numeric Numeric Mathematical

KEY Returns text character
string reflecting the last
key pressed in
response to a
CONVERSE, OBTAIN,
PROMPT, or WAIT
statement.

None Text System

LANGUAGE Returns the current
language function.

None Text System

Built-in functions

MANTIS Language 65

Function Description Input Output Function
LOG(a) Returns the natural

logarithm of a.
Numeric Numeric Mathematical

LOWERCASE(t) Converts a text
expression into
lowercase.

Text Text String

LUID Returns a text character
string of 8 characters
containing the VTAM
logical unit ID.

None Text System

MIXD(t) Retrieves DBCS data
from mixed-data.

Text DBCS String

MIXM(k) Returns a mixed-data
string containing shift
codes from DBCS data.

DBCS Text Mixed String

MIXT(t) Retrieves text string
from mixed-data.

Text Text String

MODIFIED Tests whether a specific
field or number of fields
within a map definition
changed during the last
physical I/O.

Map /
Field
name

Numeric System

NOT(a) Returns TRUE(1) if a
evaluates to FALSE(0);
otherwise, returns
FALSE(0).

Numeric Numeric Boolean

NULL Returns a zero-length
text string.

None Text String

NUMERIC(t) Returns TRUE(1) if the
text expression (t)
contains a valid
number; else returns
FALSE (0).

Text Numeric Boolean

ORD(t) Returns the numeric
value of the first
character’s EBCDIC
code from t.

Text Numeric String

PAD (statement) Fills in either or both
sides of a DBCS or text
variable with a specified
character.

Text or
DBCS

Text or
DBCS

String

Chapter 2 MANTIS conventions

66 P39-5002-00

Function Description Input Output Function
PASSWORD Returns a text character

string containing the
current password.

None Text System

PI Returns the value of Pi
(3.14159265358979).

None Numeric Mathematical

POINT(t+t) (k+k) Returns a number
representing the
position where a string
addition or subtraction
would occur if you
executed it.

Text or
DBCS

Numeric String

PRINTER Returns a text character
string containing the
current printer
assignment.

None Text System

PROGFREE Returns the number of
bytes remaining in the
program area.

None Numeric System

RELEASE Returns a text string
indicating release
information.

None Text System

RND(a) Returns a random real
number in the range
zero to a, but excluding
zero and a.

Numeric Numeric Mathematical

SGN(a) Returns -1 if a < 0, 0 if a
= 0, and +1 if a > 0

Numeric Numeric Mathematical

SIN(a) Returns the sine of a
where a is in radians.

Numeric Numeric Mathematical

SIZE Returns the size,
dimensions, or byte
length of a field.

Text or
DBCS

Numeric String

Built-in functions

MANTIS Language 67

Function Description Input Output Function
SQLCA Transfers data between

the MANTIS program
and the SQL
Communications Area.

Varies Varies SQL

SQLDA Allows MANTIS
programs to access an
SQL Descriptor Area.

Varies Varies SQL

SQR(a) Returns the square root
of a.

Numeric Numeric Mathematical

TAN(a) Returns the tangent of
a where a is in radians.

Numeric Numeric Mathematical

TERMINAL Returns a text character
string of 1–8 characters
containing the terminal
ID.

None Text System

TERMSIZE Returns terminal size in
rows and columns.

None Text System

TIME Returns a text character
string of the current
system time.

None Text System

TRUE Returns the value +1. None Numeric Boolean
TXT(a) Returns the text value

of a in MANTIS'
standard form.

Numeric Text String

UNPAD
(statement)

Removes the pad
characters from
one/both sides of a
DBCS or text variable.

Text or
DBCS

Text or
DBCS

String

UPPERCASE(t) Converts into
uppercase.

Text or
DBCS

Text String

Chapter 2 MANTIS conventions

68 P39-5002-00

Function Description Input Output Function
USER Returns a text string

containing the current
user name.

None Text System

USERWORDS Returns the number of
MANTIS symbolic
names currently in use.

None Numeric System

VALUE(t) Returns the numeric
value of the text string t.

Text Numeric String

VSI Indicates the highest
status within a logical
record after a terminal
I/O.

File-name Text File Access
or System

ZERO Returns the value zero. None Numeric Mathematical

Built-in functions

MANTIS Language 69

The following table is a reorganization of the functions. The preceding
table is organized alphabetically; this table is organized by the type of
function: Boolean, File Access, Mathematical, String, or System. Use
this table when you want to perform a certain task, but are unsure of the
particular function you will need. Scan a category to see other related
functions.

BOOLEAN FUNCTIONS

Function Description Input Output
FALSE Returns the value zero. None Numeric
NOT(a) Returns TRUE (1) if a evaluates to FALSE (0);

otherwise, returns FALSE.
Numeric Numeric

NUMERIC(t) Returns TRUE(1) if the text expression (t)
contains a valid number; else returns
FALSE(0).

Text Numeric

TRUE Returns the value +1. None Numeric

FILE ACCESS FUNCTIONS

Function Description Input Output
ASI Indicates the status of a field in a logical view. Field-

name
Text

File variable
name

Indicates the status of the last file input or
output operation

None Text

FSI Indicates the status of file name (VIEW,
ACCESS, or FILE).

File-
name

Text

VSI Indicates the status of a RDM view after an
I/O (GET, DELETE, INSERT, or UPDATE)

File-
name

Text

Chapter 2 MANTIS conventions

70 P39-5002-00

MATHEMATICAL FUNCTIONS

Function Description Input Output
ABS(a) Returns the absolute value of a. Numeric Numeric
ATN(a) Returns the angle in radians whose tangent is a

(arctangent).
Numeric Numeric

COS(a) Returns the cosine of a where a is in radians. Numeric Numeric
E Returns the value of natural e (2.71828182845905). None Numeric
EXP(a) Returns the value of natural e to the power of a. Numeric Numeric
INT(a) Returns the integer value of a. Numeric Numeric
LOG(a) Returns the natural logarithm of a. Numeric Numeric
PI Returns the value of Pi (3.14159265358979). None Numeric
RND(a) Returns a random real number in the range zero to

a, but excluding zero and a.
Numeric Numeric

SGN(a) Returns -1 if a < 0, 0 if a = 0, and +1 if a > 0. Numeric Numeric
SIN(a) Returns the sine of a where a is in radians. Numeric Numeric
SQR(a) Returns the square root of a. Numeric Numeric
TAN(a) Returns the tangent of a where a is in radians. Numeric Numeric
ZERO Returns the value zero. None Numeric

SQL FUNCTIONS

Function Description Input Output
SQLCA** Transfers data between the MANTIS program and

the SQL Communications Area.
Varies Varies

SQLDA** Allows MANTIS programs to access an SQL
Descriptor Area.

Varies Varies

** Input and output for SQL functions depend on the specific format. See the descriptions in

“MANTIS programming language” on page 75 for more information.

Built-in functions

MANTIS Language 71

STRING FUNCTIONS

Function Description Input Output
FORMAT Returns a text-string conversion of a

numeric expression according to a
supplied edit mask.

Numeric Text

LOWERCASE(t) Converts a text expression into
lowercase.

Text Text

MIXD(t) Retrieves DBCS data from mixed-data. Text DBCS
MIXM(t) Returns a mixed-data string containing

shift codes from DBCS data.
(see
state-
ment
descrip-
tion)
DBCS

Mixed

MIXT(t) Retrieves text string from mixed-data. Text Text
NULL Returns a zero-length text string. None Text
PAD(statement) Fills in either or both sides of a DBCS or

text variable with a specified character.
Text or
DBCS

Text or
DBCS

POINT(t+t) (k+k) Returns a number representing the
position where a string addition or
subtraction would occur if you executed
it. Normally, this is used with subtraction
to indicate the presence of one string
within another.

Text or
DBCS

Numeric

SIZE Returns the size, dimensions, or byte
length of a field.

Text or
DBCS

Numeric

TXT(a) Returns the text value of a. Numeric Text
UNPAD
(statement)

Removes the specified characters from
one or both sides of a DBCS or text
variable.

Text or
DBCS

Text or
DBCS

UPPERCASE(t) Converts a text expression into
uppercase.

Text Text

VALUE(t) Returns the numeric value of the text
string t.

Text Numeric

Chapter 2 MANTIS conventions

72 P39-5002-00

SYSTEM FUNCTIONS

Function Description Input Output
ATTRIBUTE Returns the current status of field,

map, terminal, and printer
attributes.

Map/ Field-
name/
Reserved word

Text

CURSOR Indicates whether cursor appeared
in a specific field at the last
terminal I/O.

Field-Name True/False

DATAFREE Returns the number of bytes
remaining in the data area.

None Numeric

DATE Returns a text character string of
the current date.

None Text

DOLEVEL Returns your current level in an
external subroutine.

None Numeric

LANGUAGE** Returns the current language
function.

None Text

KEY Returns text character string
reflecting the key you pressed in
response to a CONVERSE,
OBTAIN, PROMPT, or WAIT
statement.

None Text

LUID*** Returns a text character string of 8
characters containing the VTAM
logical unit ID.

None Text

MODIFIED Tests whether a specific field, or
the number of fields within a map
definition, changed during the last
physical I/O.

Map/Field-
name

Numeric

PASSWORD Returns a text character string
containing the current password.

None Text

PRINTER Returns a text character string
containing the current printer
assignment.

None Text

** This function is available for service level 5231 and above.
*** This function is available for service level 5501 and above.

Built-in functions

MANTIS Language 73

Function Description Input Output
RELEASE Returns a text string indicating

MANTIS release level information.
None Text

PROGFREE Returns the number of bytes
remaining in the program area.

None Numeric

TERMINAL Returns a text character string of
1–8 characters containing the
terminal ID.

None Text

TERMSIZE Returns terminal size in rows and
columns.

None Text

TIME Returns a text character string of
the current system time.

None Text

USER Returns a text character system
time string containing the current
user name.

None Text

USERWORDS Returns the number of MANTIS
symbolic names currently in use.

None Numeric

Chapter 2 MANTIS conventions

74 P39-5002-00

MANTIS Language 75

3
MANTIS programming language

This chapter describes the MANTIS programming statements,
commands, and functions in alphabetical order, including the CEF
statements. Each description contains the following information (as
applicable):

Heading Description
Restriction Any overall limitations associated with the

command, function, or statement, due to your
operating system or installation.

Description A description of the command, function,
statement, parameter, or operand.

Default The default value, if any, for the operand or
parameter.

Format The required format of the command, function,
or statement, followed by a description of all
parameters.

Options The available choices for a parameter such as
ON or OFF.

Example An example of the coded command, function, or
statement.

Considerations Any special limitations, considerations, and
guidelines for a specific parameter of the
command, function, or statement.

General
considerations

Any special limitations, considerations, and
guidelines.

Example An example of the coded command, function, or
statement.

Chapter 3 MANTIS programming language

76 P39-5002-00

MANTIS language summary
The following table lists and describes the commands, functions, and
statements in this chapter by type (some are more than one type). An (a)
indicates an arithmetic expression. Also included is the mode (either run,
immediate, or both for statements), if mode applies to that command,
function, or statement. Some entries in the table, such as DATE, are
both functions and statements.

Name Types Description Mode
ABS(a) Function Returns the absolute value of a. Run or

Immediate
ACCESS Statement Identifies external files to be

accessed by user program.
Run or
Immediate

ASI Function Indicates the status of a field in a
logical view.

Run or
Immediate

ATN(a) Function Returns the angle in radians whose
tangent is a.

Run or
Immediate

ATTRIBUTE Function,
Statement

Alters the attributes associated with a
screen design.

Run or
Immediate

BIG Statement Names and gives dimensions to
numeric variables.

Run or
Immediate

BREAK Statement Exits from FOR-END, UNTIL-END,
WHEN-END, and WHILE-END
statements.

Run

CALL Statement Invokes an interface program. Run or
Immediate

CHAIN Statement Replaces the program currently
executing with another program and
begins executing that program.

Run

MANTIS language summary

MANTIS Language 77

Name Types Description Mode
CHR Function Returns a text value consisting of the

character corresponding to the
EBCDIC code specified

Run or
Immediate

CLEAR Statement Clears the map display, all program
data, or data referred to by a
symbolic name.

Run or
Immediate

COMMIT Statement Indicates the completion of a logical
unit of work (LUW), or toggles
automatic COMMIT.

Run or
Immediate

|*COMPONENT Statement Identifies each component to be
assembled by the Compose action or
to be disassembled by the
Decompose action.

Component
Engineering
Facility (CEF)

CONVERSE Statement Sends a formatted screen design to a
terminal and returns the operator’s
responses to the program.

Run or
Immediate

COS(a) Function Returns the cosine of a where a is in
radians.

Run or
Immediate

|*CSIOPTNS Statement Specifies options to be used at the
time of the Compose action.

Component
Engineering
Facility (CEF)

CURSOR Function Indicates whether the cursor
appeared in a specific field at the last
terminal I/O.

Run or
immediate

DATAFREE Function Returns the number of bytes
available in the data area.

Run or
Immediate

DATE (function)
DATE
(statement)

Function,
Statement

Returns the current date in the format
specified in your system.

Run or
Immediate

DBCS
(statement)

Statement Names and specifies dimensions for
DBCS variables.

Run or
Immediate

DELETE Statement Deletes a record from a file or a view. Run or
Immediate

Chapter 3 MANTIS programming language

78 P39-5002-00

Name Types Description Mode
DEQUEUE Statement Releases a resource or a TOTAL

database record.
Run or
Immediate

DO Statement Transfers program execution to an
internal or external subroutine that
returns to the next statement in the
original program.

Run

DOLEVEL Function Returns your current level in an
external subroutine

Run or
Immediate

E Function Returns the value of natural (e). Run or
Immediate

END Statement Physical end of FOR-END, IF-ELSE--
END, WHEN-END, WHILE-END,
UNTIL-END, or EXEC_SQL-END
construct.

Run

ENQUEUE Statement Holds a resource. Run or
Immediate

ENTRY-EXIT Statement Defines the boundaries of a
subroutine or program.

Run

EXEC_SQL-
END

Statement Allows SQL statements to be
executed in a MANTIS program.

Run

EXIT Command,
statement

Returns control from a subroutine. Run or
Immediate

EXP(a) Function Returns the value of natural (e) to the
power of a.

Run or
Immediate

FALSE Function Returns the value zero. Run or
Immediate

FILE Statement Specifies a file that your program
accesses.

Run or
Immediate

FOR-END Statement Repeats execution of a block of
statements while a counter is
incremented or decremented through
a range of values.

Run

FORMAT Function Applies an edit mask to a numeric
expression.

Run or
Immediate

MANTIS language summary

MANTIS Language 79

Name Types Description Mode
FSI Function Indicates the status of a VIEW or file

after an I/O (GET, DELETE, INSERT,
or UPDATE).

Run or
Immediate

GET Statement Reads a record from a file or a view. Run or
Immediate

HEAD Statement Centers a heading on the top line of
the screen.

Run or
Immediate

HELP Command Displays explanatory information for
an error message, command name,
or reserved word.

Immediate

IF-ELSE-END Statement Executes a block of statements only
if a specified condition is true.

Run

INSERT Statement Inserts a new record into a file or
view.

Run or
Immediate

INT(a) Function Returns the integer value of a. Run or
Immediate

INTERFACE Statement Specifies an interface that your
program accesses.

Run or
Immediate

KANJI Statement Names and gives dimensions to
DBCS variables.

Run or
Immediate

KEY Function Returns a text string reflecting the
key you pressed in response to a
CONVERSE, OBTAIN, PROMPT, or
WAIT statement.

Run or
Immediate

KILL Command Terminates a program in a loop. Can
be changed or disabled by the Master
User.

Immediate

LANGUAGE
(function)
LANGUAGE
(statement)

Function,
Statement

Returns or assigns a language code
to the current task.

Run or
Immediate

Chapter 3 MANTIS programming language

80 P39-5002-00

Name Types Description Mode
LET Statement Assigns a value to a variable or array

elements.
Run or
Immediate

LOG(a) Function Returns the natural logarithm of a Run or
Immediate

LOWERCASE Function Converts a text string into lowercase. Run or
Immediate

LUID Function Returns a text string of 8 characters
containing the current VTAM logical
unit ID.

Run or
Immediate

MARK Statement Obtains the current position of an
RDM logical view established by the
last GET, UPDATE, INSERT, or
DELETE statement.

Run or
Immediate

MIXD Function Extracts Kanji from text mixed-data. Run or
Immediate

MIXM Function Converts a Kanji expression to a text
mixed-data string containing shift
codes.

Run or
Immediate

MIXMODE Statement Controls the handling of mixed-data. Run or
Immediate

MIXT Function Extracts a SBCS (single byte
character string) text string from text
and mixed-data expressions.

Run or
Immediate

MODIFIED Function Tests whether a field was changed
during the last terminal I/O.

Run or
Immediate

NEXT Statement Executes the next repeat in
FOR-END, UNTIL-END, or
WHILE-END statements or the next
condition in a WHEN-END statement.

Run

NOT(a) Function Returns TRUE if a evaluates to
FALSE; otherwise, returns FALSE.

Run or
Immediate

NULL Function Returns a zero-length text value (“”). Run or
Immediate

MANTIS language summary

MANTIS Language 81

Name Types Description Mode
NUMERIC Function Determines if a text expression

contains a valid number.
Run or
Immediate

OBTAIN Statement Obtains data from an unformatted
screen and assigns input data to
arithmetic and text variables.

Run or
Immediate

ORD Function Returns the numerical value of the
first character EBCDIC code.

Run or
Immediate

OUTPUT Statement Routes output from CONVERSE or
SHOW statements to the screen,
printer, or both.

Run or
Immediate

PAD Statement Fills either or both sides of a text
variable with a specified character.

Run or
Immediate

PASSWORD Function Returns a text string containing the
current password.

Run or
Immediate

PERFORM Statement Invokes a user-written COBOL,
Assembler or PL/1 program without
passing data to it. Also invokes
MANTIS on an external background
task in CICS.

Run

PI Function Returns the value of PI. Run or
Immediate

POINT Function Returns a number representing the
position where a string addition or
subtraction would occur if you
executed it.

Run or
Immediate

PRINTER
(function)
PRINTER
(statement)

Function,
Statement

Indicates the printer device MANTIS
routes output to, or returns the
current setting.

Run or
Immediate

PROGFREE Function Returns the number of bytes
available in the program area.

Run or
Immediate

Chapter 3 MANTIS programming language

82 P39-5002-00

Name Types Description Mode
PROGRAM Statement Identifies an external subroutine your

program uses.
Run or
Immediate

PROMPT Statement Displays a prompter. Run or
Immediate

RELEASE
(function)
RELEASE
(statement)

Function,
Statement

Frees storage for programs loaded
with PROGRAM statement, or frees
RDM’s internal storage for all or
individual views currently opened.
Returns a text string of current
release information.

Run or
Immediate

REPLACE Statement,
command

Names the library (yours only),
program, password, and description
to be created or replaced as the
executable program by the Compose
action or the program editor.

Run or
Immediate

RESET Statement Backs out a logical unit of work
(LUW).

Run or
Immediate

RETURN Statement Returns control from a subroutine or
stops execution of a program.

Run

RND(a) Function Returns a random real number in the
range zero to a, but excluding zero
and a.

Run or
Immediate

RUN Command Executes the program currently in the
work area.

Immediate

SCREEN Statement Specifies a screen design used by
your program.

Run or
Immediate

SCROLL Statement Controls whether MANTIS scrolls
top-to-bottom or bottom-to-top on an
unformatted screen, or sets scrolling
increments for window mode.

Run or
Immediate

MANTIS language summary

MANTIS Language 83

Name Types Description Mode
SEED Statement Seeds the random number generator

to generate numbers.
Run or
Immediate

SGN(a) Function Returns -1 if a < 0, 0 if a = 0, and +1
if a > 0.

Run or
Immediate

SHOW Statement Displays and formats data on an
unformatted screen.

Run or
Immediate

SIN(a) Function Returns the sine of a where a is in
radians.

Run or
Immediate

SIZE Function Returns the size and dimensions of a
field.

Run or
Immediate

SLICE Statement Limits number of program statements
a user can execute before MANTIS
suspends the program.

Run or
Immediate

SLOT Statement Limits the times a program can reach
the SLICE limit before MANTIS
returns a program loop warning
message.

Run or
Immediate

SMALL Statement Names and gives dimensions to
numeric variables.

Run or
Immediate

SOURCE Statement Names the library (yours only),
program, password, and description
to be created or replaced as the
source program by the Decompose
action.

CEF
Component
Engineering
Facility

SQLCA
(function)
SQLCA
(statement)

Function,
Statement

Transfers data between the MANTIS
program and the SQL
Communications Area (SQLCA).

Run or
immediate

SQLDA Function,
Statement

Allows MANTIS programs to access
an SQL Descriptor Area(SQLDA).

Run or
immediate

SQR(a) Function Returns the square root of a. Run or
Immediate

Chapter 3 MANTIS programming language

84 P39-5002-00

Name Types Description Mode
STOP Statement Terminates program execution. Run or

Immediate
TAN(a) Function Returns the tangent of (a) where a is

in radians.
Run or
Immediate

TERMINAL Function Returns a text string of 1–8
characters containing the current
terminal ID.

Run or
Immediate

TERMSIZE Function Returns your terminal size in rows
and columns.

Run or
Immediate

TEXT Statement Names and gives dimensions to text
variables.

Run or
Immediate

TIME (function)
TIME
(statement)

Function,
Statement

Returns the current time or sets the
time format.

Run or
Immediate

TOTAL Statement Specifies a TOTAL file view. Run or
Immediate

TRAP Statement Intercepts error conditions during I/O
to a MANTIS, TOTAL, or external
VSAM file, or an RDM logical view.

Run or
Immediate

TRUE Function Returns the value +1. Run or
Immediate

TXT(a) Function Returns the text value of a. Run or
Immediate

UNPAD Statement Removes zero or more occurrences
of a specified character from either or
both sides of a text variable.

Run or
Immediate

UNTIL-END Statement Repeats execution of a block of
statements until a specified condition
becomes true.

Run

UPDATE Statement Replaces a record in a file or view
with an updated record.

Run or
Immediate

UPPERCASE Function Converts a text string into uppercase. Run or
Immediate

MANTIS language summary

MANTIS Language 85

Name Types Description Mode
USAGE Command Displays program lines containing a

specified field name (a Line Editor
Command).

Immediate

USER Function Returns a text string containing the
current user name.

Run or
Immediate

USERWORDS Function Returns the number of MANTIS
symbolic names currently in use.

Run or
Immediate

VALUE Function Returns the numeric value of a text
string.

Run or
Immediate

VIEW Statement Specifies a RDM logical view. Run or
Immediate

VSI Function Indicates the highest field status
within a logical record.

Run or
Immediate

WAIT Statement Temporarily suspends execution of a
program.

Run or
Immediate

WHEN-END Statement Executes a block of statements only
when a specified condition is true.

Run

WHILE-END Statement Repeats execution of a block of
statements while a specified
condition is true.

Run

ZERO Function Returns the value zero. Run or
Immediate

The rest of this chapter contains all of the MANTIS commands, functions,
and statements in alphabetical order.

Chapter 3 MANTIS programming language

86 P39-5002-00

ABS
The ABS function returns the absolute value of an arithmetic expression.

ABS(a)

a

Description Required. Specifies the value whose absolute value you want returned.

Format A numeric expression

General consideration

See also “SGN” on page 399.

Examples The following examples show how the ABS function returns various
absolute values:

Example Results Comments
ABS(0) 0
ABS(7) 7
ABS(-5) 5
ABS(-13E9) .13E11

ACCESS

MANTIS Language 87

ACCESS
The ACCESS statement identifies an external file (VSAM, SAP, or PC)
for your program to use. MANTIS retrieves the file view description from
the user library and places it in the work area. If view variables are not
already defined, MANTIS defines them; if view variables are already
defined, MANTIS checks for consistency.

ACCESS ([:] , [, PREFIX] [,]
, NEW

, REPLACE
 [, FILE])

[, ([:] , [, PREFIX][,]
, NEW

, REPLACE
 [, FILE]). . .]

name1 library1 access - name1 password1 n1 extname

name2 library2 access name2 password2 n2 extname

�

�
�

�

�
�

�

�
�

�

�
�−

name

Description Required. Specifies a name you use for the file view in subsequent GET,
INSERT, DELETE, UPDATE, and TRAP statements.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Considerations

♦ When the symbolic name has been previously defined, MANTIS
bypasses this definition.

♦ The physical open of the file (when required) does not take place
until the first GET, UPDATE, INSERT, or DELETE statement is
executed. You can use the TRAP statement to trap file open errors.

Chapter 3 MANTIS programming language

88 P39-5002-00

[library:]access-name

Description Required. Specifies the name of the file view given during the Design an
External File View session.

Format Must be a text expression that evaluates to a valid file view name

Considerations

♦ This parameter is translated to uppercase upon execution of your
program.

♦ For more information on valid file view names, refer to MANTIS
Facilities, OS/390, VSE/ESA, P39-5001.

♦ If the file view is in another user’s library, you can access it by
specifying the name of the user in whose library it does reside,
(library:). If the file view does reside in your library, you can supply
the file view name only. If this parameter is used the colon (:) is
required.

♦ If you want this entity to be HPO bound, the library name must be
specified even if it is in your own library.

password

Description Required. Specifies the password valid for the type of access (e.g., read-
only, update, insert/delete) your program needs.

Format Must be a text expression which evaluates to the valid password

Consideration Password is not translated to uppercase.

ACCESS

MANTIS Language 89

PREFIX

Description Optional. Specifies whether MANTIS places the symbolic name
previously described and an underscore before all data field names
associated with this file view. If, for example, you code:
10 ACCESS CUSTOMER("CLIENT","SALES",PREFIX)

and the external file CLIENT has a data field named NUMBER, the
program would refer to that data field now as CUSTOMER_NUMBER.

Format Must be coded exactly as shown

Considerations

♦ MANTIS also prefixes the reference variable you supply for
SEQUENTIAL and NUMBERED files.

♦ See the PREFIX parameter under “FILE” on page 222.

♦ For more information, refer to MANTIS Program Design and Editing,
OS/390, VSE/ESA, P39-5013.

n

Description Optional. Indicates how many buffers MANTIS should allocate to this file.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1–255

Considerations

♦ When you use the n parameter to specify multiple buffers, you must
also add the LEVEL=n option to GET, INSERT, DELETE, and
UPDATE statements. Variables defined in the ACCESS view then
have an additional dimension, that is, scalars become arrays,
1-dimensional arrays become 2-dimensional arrays. So, you cannot
use multiple buffers for an external file that has two-dimensional
arrays already in it.

♦ You can also specify multiple buffers for the reference variable you
supply with SEQUENTIAL and NUMBERED files.

♦ MANTIS uses only the integer portion of n.

Chapter 3 MANTIS programming language

90 P39-5002-00

NEW

Description Optional. Marks the data set as reusable by VSAM. This frees any
previously inserted records.

Consideration This parameter applies to sequential files in Batch mode.

REPLACE

Description Optional. Marks the data set as reusable by VSAM. This frees any
previously inserted records.

Consideration This parameter applies to sequential files in Batch mode.

FILE extname

Description Optional. Specifies an external file DDname/DLBL that is used instead of
the name provided in the external file view.

Format Text expression that evaluates to a valid DDname/DLBL

Consideration This parameter applies to sequential files in Batch mode.

General considerations

♦ An external file open (when required) is issued on the first DELETE,
GET, INSERT, or UPDATE.

♦ Personal computer DIF files are recreated each time you access
them and make an insert.

♦ File views residing on personal computer files can be accessed only
by that personal computer user.

♦ For extended external file status messages and Function Status
Indicators (FSIs), see “Extended status messages for MANTIS and
external files” on page 521.

♦ NEW, REPLACE, and FILE parameters allow you to reuse sequential
VSAM files in Batch mode as work files. Sequential files are closed
and reopened at a CHAIN without level.

ACCESS

MANTIS Language 91

♦ This statement can be affected by the External File Exit. See your
Master User for details.

♦ See also “DELETE” on page 183, “FSI” on page 232, “GET” on
page 234, “INSERT” on page 277, and “UPDATE” on page 479.

PC file type

ACCESS
password

Comments

Functions
allowed

File
pointer*

SEQUENTIAL VIEW The file must already
exist.

GET BOF

 ALTER The file must already
exist.

GET BOF

 INSERT /
DELETE

The file will be re-
created when the first
GET or INSERT is
issued.

GET
INSERT

BOF
EOF

NUMBERED VIEW The file must already
exist.

GET BOF

 ALTER The file must already
exist.

GET
UPDATE /
INSERT /
DELETE

EOF

 INSERT /
DELETE

The file will be re-
created when the first
DELETE, GET,
INSERT, or UPDATE
is issued.

GET
UPDATE /
INSERT /
DELETE

BOF
Refer

* BOF—Beginning of File
 EOF—End of File
 Refer—As determined by the value in the reference variable

Chapter 3 MANTIS programming language

92 P39-5002-00

Examples

♦ The following example shows how the ACCESS statement is used to
retrieve a file and display it in your work area:
00010 ENTRY ACCESS_EXAMPLE

00020 .SMALL BUFFER

00030 .ACCESS RECORD("INDEX","IDXPSWD",16)

00040 .SCREEN MAP("INDEX")

00050 .WHILE RECORD<>"END"AND MAP<>"CANCEL"

00060 ..CLEAR MAP:BUFFER=1

00070 ..WHILE RECORD<>"END"AND BUFFER<=16

00080 ...GET RECORD LEVEL=BUFFER

00090 ...BUFFER=BUFFER+1

00100 ..END

00110 ..CONVERSE MAP

00120 .END

00130 EXIT

♦ The following example shows how to access a reusable file for Batch
MANTIS:

20 .ACCESS RECORD("INDEX","SERENDIPITY",16,NEW)

30 .SCREEN MAP("INDEX")

40 .WHILE RECORD<>"END" AND MAP<>"CANCEL"

50 ..CLEAR MAP: LEVEL_NUMBER=1

60 ..GET RECORD LEVEL=LEVEL_NUMBER

100 .END

ASI

MANTIS Language 93

ASI
The ASI (Attribute Status Indicator) function returns the status of a field in
a RDM logical record.

ASI(view-name, field-name)

view-name

Description Required. Specifies the name for the logical view.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

field-name

Description Required. Specifies the name of a field in a logical view.

General considerations

♦ Attribute Status Indicator (ASIs) reflect the status of each field
defined in your logical view. For details, see “RDM status functions”
on page 517.

♦ If the view is defined in a calling program and passed as a parameter
on an external DO, both the view and the field-name must be passed.

♦ See also “DELETE” on page 183, “FSI” on page 232, “GET” on
page 234, “INSERT” on page 277, “TRAP” on page 469, “UPDATE”
on page 479, and “VSI” on page 505.

Example The following example shows how the ASI function can test fields:
00020 VIEW PARTS("PARTS-ON-ORDER")

00100 GET PARTS

Example Results Comments
ASI(PARTS,PART_NAME) "MISSING" The field (PART_NAME) is

missing; that is, has a null
value.

Chapter 3 MANTIS programming language

94 P39-5002-00

ATN
The ATN (arctangent) function returns the angle in radians whose
tangent is the arithmetic expression (a).

ATN(a)

a

Description Required. Specifies the value whose arctangent you want returned.

Format A numeric expression

General considerations

♦ See “COS” on page 164, “PI” on page 367, “SIN” on page 403, and
“TAN” on page 454.

♦ The value returned will be between π/2 and -π/2.

Examples The following examples show how the ATN function returns the value of
various numeric expressions:

Example Results Comments
ATN(0) 0
ATN(1) .785398163
ATN(-1) -.785398163

ATTRIBUTE

MANTIS Language 95

ATTRIBUTE
ATTRIBUTE is both a statement and a function. You can use the
statement form to set attributes (to change the current settings) and the
function form to return attributes (to inquire about the current settings).
Both the ATTRIBUTE statement and function are described in the
following pages. The functionality described on these pages is available
to all users, but it is controlled by the Master User. See your Master User
to be certain you have access to the reserved functions of ATTRIBUTE.

ATTRIBUTE (Function)
The ATTRIBUTE function returns attributes of a previously-defined
SCREEN, field variable, or device, or returns the physical coordinates of
the cursor on the screen. Your Master User determines access to the
ATTRIBUTE function.

MANTIS returns only the nondefault attributes, except for the
PROTECTED/UNPROTECTED, AUTOSKIP/NOAUTOSKIP, and
UPPERCASE attributes. See the list of attributes at the end of the
ATTRIBUTE function.

(())

()
()
()

CURSORTERMINAL,
 TERMINAL

PRINTER

,,

,

 ATTRIBUTE

�
�
�

�

�
�
�

�

�

�
�
�

�

��
�

�

�
�
	

�
�

colrow
name-field

name-screen

Chapter 3 MANTIS programming language

96 P39-5002-00

ATTRIBUTE ())
,,

,
 (�

�

�
�
�

�
−

colrow

name-field
namescreen

screen-name

Description Required. Specifies the name (as defined in a previously executed
SCREEN statement) of the screen whose attributes you want returned.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

field-name

Description Optional. Specifies the name of a previously-defined field whose
attributes you want returned.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Considerations

♦ field-name is mutually exclusive with (row,col).

♦ field-name is a field in the SCREEN design for screen-name.

ATTRIBUTE

MANTIS Language 97

(row,col)

Restriction Your Master User determines if you have access to this format of the
ATTRIBUTE function

Description Optional. Specifies the coordinates of the field within the logical display
whose attributes you want returned.

Considerations

♦ The row and column positions must fall within a field in the specified
screen domain, or MANTIS issues an error message.

♦ MANTIS uses only the integer portion of row and col.

♦ (row,col) is mutually exclusive with field-name.

General considerations

♦ The ATTRIBUTE(screen-name) function returns one of the
following:

- "(lrow,lcol),SET"

- "(lrow,lcol)"

 where (lrow,lcol) are the row and column domain of the SCREEN.
“SET” indicates that screen-name is part of the current map set; the
absence of “SET” indicates that screen-name is not part of the
current map set.

♦ The ATTRIBUTE ()(
,
, ,)screen name
field - name
row col−

�

�
�

�

�
� function returns:

 "(lrow,lcol),length,type,attributes"

 where lrow and lcol are the row and column coordinates of the field in
the logical display; length is the length of the field, type indicates the
type of the field, and attributes is a list of the 3-character
abbreviations of the field’s attributes. This function returns only
nondefault attributes in uppercase text.

Chapter 3 MANTIS programming language

98 P39-5002-00

♦ This function can return one of the following types for a field.
Underlining indicates the 3-character abbreviation that you see when
the values are returned.

- TEXT

- NUMERIC

- HEADING

- KANJI

♦ You should use the POINT function to determine if a field has a
particular size or attribute. Do not rely on the fixed position of any
particular attribute, as the attribute can move when other attributes
are set or reset.

()
()��

�

�
�
�

TERMINAL

PRINTER
 ATTRIBUTE

PRINTER

Description Optional. Specifies that printer attributes are to be returned.

Format A MANTIS reserved word, coded exactly as shown

ATTRIBUTE

MANTIS Language 99

TERMINAL

Restriction Your Master User determines if you have access to this format of the
ATTRIBUTE function.

Description Specifies that printer or terminal attributes are to be returned.

Format A MANTIS reserved word, coded exactly as shown

General considerations

♦ The ATTRIBUTE (PRINTER)
(TERMINAL)

�
�
�

�
�
�

 function returns text in the

following form:

 “(prow,pcol),attributes”

 where prow and pcol are the size of the physical terminal or printer
and attributes is a list of the 3-character abbreviations of the
terminal’s or printer’s attributes.

♦ You can use the POINT function to determine if that terminal has a
particular size or attribute. Do not rely on fixed position of any
particular attribute because it can move when other attributes are set
or reset (see example 5).

Chapter 3 MANTIS programming language

100 P39-5002-00

ATTRIBUTE(TERMINAL,CURSOR)

(TERMINAL,CURSOR)

Description Required. Returns the position of the cursor in the logical display.

Format MANTIS reserved words, coded exactly as shown

Considerations

♦ The ATTRIBUTE (TERMINAL,CURSOR) function returns a text
string in the following form:

 “(lrow,lcol)”

 where lrow and lcol are the row and column positions of cursor within
the logical (and not the physical) terminal.

♦ If the cursor is in the Command Line or Key Simulation Field, the row
is returned as 256.

General considerations

♦ The ATTRIBUTE function returns the values (nondefault attributes
only) of the field, screen, terminal, or printer you are testing. For
more information on the attributes, see the first table under “General
considerations for the ATTRIBUTE statement” on page 110, and
refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001. For more
information on which attributes are returned, see the second table in
that section.

♦ On the ATTRIBUTE(TERMINAL) function, the NLS value is returned
only if it has been set explicitly (has not defaulted.)

♦ See also “CURSOR” on page 171 and “MODIFIED” on page 332.

ATTRIBUTE

MANTIS Language 101

Examples The following examples show how the ATTRIBUTE function returns
values:

Example Results Comments
ATTRIBUTE(MAP,TEST_FIELD) "(9,2),14,TXT,UPP,UNP,R

EV,RED,AUT" TEST_FIELD begins on
the screen at logical row 9,
column 2, and is 14 bytes
long. It is defined as text,
uppercase, unprotected,
displayed in red reverse
video, normal intensity,
with autoskip in effect.

ATTRIBUTE(MAP,(9,2)) "(9,2),14,TXT,UPP,UNP,R
EV,RED,AUT" Same field as prior

example.
ATTRIBUTE(MAP) "(22,80)" The map domain is 22

rows and 80 columns. The
map is not part of the
current map set.

ATTRIBUTE(PRINTER) "(32,80)" Physical 32x80 printer.
ATTRIBUTE(TERMINAL) "(32,80),REV,BLI,COL,UN

D, DET" Physical 32x80 screen that
supports reverse video,
blinking, color, underlining,
and pen detect.

ATTRIBUTE(TERMINAL,CURSOR
)

"(8,5)" Cursor was at logical
(within the logical display)
row 8, column 5, when
user pressed the AID key.

ATTRIBUTE(TERMINAL,CURSOR
)

"(256,1)" Cursor was at unsolicited
input field (bottom line)
when user pressed the AID
key.

POINT(ATTRIBUTE(MAP,
TEST_FIELD) -"RED")

TRUE (1) When TEST_FIELD has
“RED” attribute.

(ATTRIBUTE(MAP,TEST_FIELD
)-"RED" -
"BLU")<>ATTRIBUTE
(MAP,TEST_FIELD)

TRUE (1) When TEST_FIELD has
either “RED” or “BLU”
(blue) attributes.

Chapter 3 MANTIS programming language

102 P39-5002-00

ATTRIBUTE (Statement)
Use the ATTRIBUTE statement in your programs to change the attributes
of a screen, a field on a screen, a terminal, or a printer. The changed
attributes remain in effect until you change them again or use the RESET
attribute to revert to the original (default) specification. Use the
ATTRIBUTE function at the command line or in a program to check the
current status of field-level, map-level, terminal, and printer attributes.

(())

()
()

())",(" CURSORTERMINAL,

TERMINAL

,...],[,,PRINTER

,,

,

 ATTRIBUTE

�
�
�
�

�

�
�
�
�

�

�

�
�
�
�

�

�
�
�
�

�

�
�
	

�
�

=

=

pcolprow

e3e2e1

lcollrow

name-field
name-screen

ATTRIBUTE

MANTIS Language 103

ATTRIBUTE screen-name statement

(()) [],...,, =
,,

,
 ATTRIBUTE e3e2e1

lcollrow
name-field

name-screen �
�

�
�
�

�

screen-name

Description Required. Specifies the name of a screen design (as defined in a
previously executed SCREEN statement).

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

field-name

Description Optional. Specifies the field whose attribute(s) you want to alter in a
screen design (as defined in a previously executed SCREEN statement).

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Consideration If you omit field-name, the ATTRIBUTE statement applies to all variables
associated with the specified screen design (all nonheading fields).

Chapter 3 MANTIS programming language

104 P39-5002-00

(lrow,lcol)

Restriction Your Master User determines if you have access to this form of the
ATTRIBUTE statement. You get an error message if you try to use this,
and you don’t have access.

Description Optional. Represents the initial logical row and column position of the
field where you want to assign attributes.

Format Two arithmetic expressions that evaluate to a value in the range 1–255

Considerations

♦ The (lrow, lcol) coordinates for the ATTRIBUTE statement are based
on logical coordinates if a CONVERSE statement specifies row,
column coordinates other than (1,1) for the screen display. This can
be handled in a program by including the screen row and column
within the ATTRIBUTE statement. For example:

SCRROW=3:SCRCOL=4

CONVERSE MAP(SCRROW,SCRCOL)

ATTRIBUTE(MAP,(5+(SCRROW-1),10+(SCRCOL -1)))="BRI"

CONVERSE MAP(SCRROW,SCRCOL)

 Sets the bright attribute for a field that was moved from physical
display position (5,10) to logical position (7,13) by the CONVERSE of
map (3,4).

 Following a CLEAR, or a CONVERSE without a WAIT, SET, or
UPDATE, for a map not within the current map set, the ATTRIBUTE
statement allows the screen definition coordinates to be specified on
the ATTRIBUTE statement.

♦ If the screen is defined in a caller and passed as a parameter on an
external DO, both the screen and the field-name must be passed.

♦ Because of the attribute byte, fields normally start at column 2 and
beyond.

ATTRIBUTE

MANTIS Language 105

e1[,e2,e3...]

Description Required. Specifies the attribute(s) for a particular screen, field, or
(lrow,lcol) designation.

Format Text expression that evaluates to a comma-separated list of one or more
of the attributes available

Options For available options, see the first table under “General considerations
for the ATTRIBUTE statement” on page 110. Underlined characters in
the following attributes show values that you can use. Do not include
spaces (for example, NO COLOR is specified as NOC).

Considerations

♦ MANTIS translates the expressions to uppercase.

♦ If you specify more than one expression, MANTIS processes the
expressions from left to right. Within each expression, MANTIS
processes the attributes from left to right.

♦ MANTIS only looks at the first three characters of an attribute
specification, ignoring the rest, up to a comma. Therefore, you may
either use the three-character value for brevity or the fully spelled-out
attribute for improved program readability. For example, the
following two lines are equivalent:
ATTRIBUTE(MAP,FIELD)="CUR"
ATTRIBUTE(MAP,FIELD)="CURSOR"

 However, when the first three characters of the spelled-out attribute
do not provide the desired attribute value, or the spelled-out attribute
includes spaces, you cannot fully spell the attribute out. For
example, although the following two lines are valid:
ATTRIBUTE(MAP,FIELD)="NCU"

ATTRIBUTE(MAP,FIELD)="NCURSOR"

 …the first of the following two lines is invalid and the second
produces an undesired result. In the first line, there is a space. In
the second line, “NOC” is not the desired value—“NOC” means NO
COLOR rather than “NO CURSOR”.
ATTRIBUTE(MAP,FIELD)="NO CURSOR"

ATTRIBUTE(MAP,FIELD)="NOCURSOR"

Chapter 3 MANTIS programming language

106 P39-5002-00

ATTRIBUTE PRINTER/TERMINAL statement

ATTRIBUTE (PRINTER)
(TERMINAL) = [, , ...]

�
�
�

�
�
�

e1 e2 e3

(PRINTER)

Description Optional. Specifies that the online printer is capable of receiving the
attributes that follow.

Format A MANTIS reserved word, coded exactly as shown

Considerations

♦ Use the ATTRIBUTE(PRINTER) statement in environments where
printer characteristics vary from device to device, or do not match the
characteristics of the attached terminal or where printer exits require
certain dimensions or attributes.

♦ If the characteristics of a printer are not set, they are assumed to be
the same as the attached terminal.

♦ The terminal or printer must support the attributes you specify.
MANTIS does no validation to ensure the device can handle the
specified attributes. Device errors or program abends can occur if
the device cannot support the generated data stream.

ATTRIBUTE

MANTIS Language 107

(TERMINAL)

Restriction Your Master User determines if you have access to this form of the
ATTRIBUTE statement. You receive an error message if you try to use
this form and you do not have access.

Description Optional. Specifies that the physical terminal is capable of receiving the
attributes that follow.

Format A MANTIS reserved word, coded exactly as shown

Considerations

♦ Use the ATTRIBUTE(TERMINAL) statement in environments where
it is impossible to determine the characteristics of a terminal through
the assistance of a TP monitor.

♦ MANTIS does not support dynamic switching of terminal sizes via the
ATTRIBUTE(TERMINAL) statement.

♦ If ATTRIBUTE(TERMINAL) is set to UPP, UPPERCASE=N has no
effect in the FSE and CEF (Full Screen Editor and Component
Engineering Facility).

♦ ATTRIBUTE(TERMINAL)=NLS(xxx) can be used to invoke a
customizable translation table in countries that use an alternate
alphabet. See the description of the NLS attribute, and your System
Administrator for more information.

♦ The terminal or printer must support the attributes you specify.
MANTIS does no validation to ensure the device can handle the
specified attributes. Device errors or program abends can occur if
the device cannot support the generated data stream.

Chapter 3 MANTIS programming language

108 P39-5002-00

e1[,e2,e3...]

Description Required. Specifies the attribute(s) for a particular screen, field, or
(row,col) designation a printer or terminal will accept.

Format Text expression that evaluates to a comma-separated list of one or more
of the attributes available

Options See the first table under “General considerations for the ATTRIBUTE
statement” on page 110 for the available options. Underlined characters
in the following attributes show abbreviations that you can use. Do not
include spaces (for example, NO COLOR is abbreviated NOC).

Considerations

♦ If you specify more than one expression, MANTIS processes the
expressions from left to right. Within each expression, MANTIS
processes the attributes from left to right.

♦ MANTIS translates the expressions to uppercase.

♦ The CLASS attribute for printers allows you to select an operation
mode for your printer within the given printer environment. Valid
values for printing mode are:

- CLASS(0)—default printing mode.

- CLASS(1)—SCS printing support for the 3270 environment.

 You also specify the size of the layout sent to the given printer in the
format ATTRIBUTE=CLASS (0), (row, col), where the valid values
are:

 row = 6–255 column = 41–255

 For more details on printing modes, refer to MANTIS Administration,
OS/390, VSE/ESA, P39-5005.

♦ Specify all row/column values relative to (1,1).

ATTRIBUTE

MANTIS Language 109

ATTRIBUTE TERMINAL/CURSOR statement

ATTRIBUTE([TERMINAL,]CURSOR)="(prow,pcol)"

([TERMINAL,]CURSOR)

Description Required. Specifies that the cursor on the terminal should be positioned
at the following row and column coordinates. The TERMINAL reserved
word is optional.

Format MANTIS reserved words, coded exactly as shown

"(prow,pcol)"

Description Required. Specifies row and column positions of the cursor at the next
CONVERSE.

Format Text expression containing row and column coordinates, separated by a
comma and enclosed in parentheses

Considerations

♦ Specify all row/column values relative to (1,1), as integers separated
by a comma and enclosed in parentheses. “(prow,pcol)” can be any
text expression. The literal shown here is an example.

♦ The CURSOR attribute places the cursor at the first position of the
field. If you have multiple ATTRIBUTE statements, MANTIS places
the cursor at the first position of the field named in your last
ATTRIBUTE statement.

♦ The prow and pcol values must be within the dimensions of the
physical (and not the logical) terminal.

♦ Setting the cursor using this statement has precedence over
ATTRIBUTE(map,field)=“CURSOR”.

Chapter 3 MANTIS programming language

110 P39-5002-00

General considerations for the ATTRIBUTE statement
The following table lists all the attributes, alphabetically by sets, that are
used with the ATTRIBUTE statement to set a value (see “ATTRIBUTE
(Function)” starting on page 95 for a list of attributes that are returned by
that function). Each attribute is classified by where you can set it—
TERMINAL, PRINTER, CURSOR, screen, field, or screen design, as
indicated by the headings on the table.

Setting one attribute will disable other attributes on that line. When there
are conflicting attributes, MANTIS uses the last attribute that was set.
RESET returns attributes to the screen-design values.

You can set some attributes in different places. Generally, you can set
any Field attribute at the Screen level, and it then applies to all fields in
the screen. (Screen design attributes are discussed further in
“ATTRIBUTE (Function)” starting on page 95, and are specified in the
Update Field Specifications option of Screen Design as documented in
MANTIS Facilities, OS/390, VSE/ESA, P39-5001.)

Attribute

Terminal

Printer

Cursor

Screen

Field

Screen
design

AUTOSKIP / NO
AUTOSKIP

 � � �

BLINK / NO BLINK � � � �
BOXED / UNBOXED � � � � �
BRIGHT / NORMAL /
HIDDEN

� � � �

CLASS �
COLOR / NO COLOR � �
CURSOR / NO
CURSOR

 � � �

ATTRIBUTE

MANTIS Language 111

Attribute

Terminal

Printer

Cursor

Screen

Field

Screen
design

DEFAULT / RANGE /
FILL / MASK /
REQUIRED

 � � ��

DETECTABLE / NON
DETECTABLE

� � � � �

FULL DISPLAY / NO
FULL DISPLAY

 � �

HIGHLIGHT/NO
HIGHLIGHT

 � � �

KANJI/NOKANJI � � � �
KEEP MAP MODIFIED
/ RESET MAP
MODIFIED

 �

LEFT BAR / NO LEFT
BAR

� � � � �

\MIX / NO MIX � � �
MODIFIED /
UNMODIFIED

 � � �

NATIVE LANGUAGE
SUPPORT*

�

NUMERIC, TEXT,
KANJI, HEADING

� �

NEUTRAL / BLUE /
PINK / GREEN /
TURQUOISE / RED /
YELLOW

 � � �

OVERLINE / NO
OVERLINE/

� � � � �

PROTECT BOTTOM
LINE / BOTTOM LINE
ENTERABLE

 � �

PROTECTED /
UNPROTECTED

 � � �

RESET � �

Chapter 3 MANTIS programming language

112 P39-5002-00

Attribute

Terminal

Printer

Cursor

Screen

Field

Screen
design

REVERSE VIDEO /
VIDEO / REVERSE
FULL FIELD

� � � � �

RIGHT BAR / NO
RIGHT BAR

� � � � �

SEND ALL FIELDS /
SEND MODIFIED
FIELDS

�

SOUND ALARM / NO
ALARM

 � �

UNDERLINE / NO
UNDERLINE /
UNDERLINE FULL
FIELD

� � � � �

UPPERCASE /
LOWERCASE

� � � � �

* See the NLS attribute description for the arguments returned with this attribute.

ATTRIBUTE

MANTIS Language 113

♦ All attributes listed in the preceding table might not be available for
your particular terminal. MANTIS ignores those attributes that are
not supported by your terminal unless changed by ATTRIBUTE
(TERMINAL). (Consult your Master User for setting specific terminal
or printer attributes.)

♦ Use commas to separate multiple attributes in a single text
expression (for example, “CUR,HIG”) or multiple expressions (for
example, “CUR”,“HIG”).

♦ If you specify two or more conflicting attributes (attributes from the
same line in the above table), MANTIS uses the last one processed.
Related attributes will conflict. For example, of the color attributes,
MANTIS will use the last one that was set before the occurrence of a
CONVERSE.

♦ Data type attributes (“NUM”, “TXT”, and “KAN”) are not allowed to be
set by the ATTRIBUTE statement because the SCREEN statement
has already defined the associated TEXT, Kanji, BIG, or SMALL
variable.

♦ You can also set many attributes in Screen Design. (For more
details, refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001.)

♦ Note that a list of the attributes returned by the ATTRIBUTE function
appears in “ATTRIBUTE (Function)” starting on page 95.

♦ See also “CURSOR” on page 171 and “MODIFIED” on page 332.

Chapter 3 MANTIS programming language

114 P39-5002-00

♦ The following table, which provides details about the pairs of
attributes that can be set by the ATTRIBUTE statement, and those
attributes returned by the ATTRIBUTE function, lists attribute
abbreviations alphabetically:

Attribute
abbreviation

Attribute name

Related attributes

Returned
by attribute
function

Can be set
by attribute
statement

ALA SOUND ALARM NO ALARM � ��

AUT AUTOSKIP NO AUTOSKIP � �

BLI BLINK NO BLINK/
HIGHLIGHT

� ��

BLU BLUE NEUTRAL / PINK /
GREEN / YELLOW /
TURQUOISE / RED

� ��

BOT BOTTOM LINE
ENTERABLE

PROTECT BOTTOM
LINE

� �

BOX BOXED UNBOXED � ��

BRI BRIGHT NORMAL / HIDDEN /
HIGHLIGHT

� ��

CLA CLASS None � ��

COL COLOR NO COLOR � ��

CUR CURSOR NO CURSOR � ��

DEF DEFAULT VALUE None �� �

DET DETECTABLE NON DETECTABLE � ��

FIL FILL None �� �

FUL FULL DISPLAY NO FULL DISPLAY � �

GRE GREEN NEUTRAL / BLUE /
PINK / TURQUOISE
/ RED / YELLOW

� ��

ATTRIBUTE

MANTIS Language 115

Attribute
abbreviation

Attribute name

Related attributes

Returned
by attribute
function

Can be set
by attribute
statement

HED HEADING NUMERIC / KANJI /
TEXT

�� �

HID HIDDEN BRIGHT / NORMAL � ��

HIG HIGHLIGHT NO HIGHLIGHT /
BLINK / BRIGHT /
REVERSE VIDEO

� ��

IMX INTERNAL MIXED None �� �

KAN KANJI NOKANJI � �

KMM KEEP MAP
MODIFIED

RESET MAP
MODIFIED

� ��

LBA LEFT BAR NO LEFT BAR � ��

LOW LOWERCASE UPPERCASE �
MAS MASK None �� �

MIX MIX NO MIX � ��

MOD MODIFIED UNMODIFIED � ��

NAU NO AUTOSKIP AUTOSKIP
NCU NO CURSOR CURSOR �
NEU NEUTRAL BLUE / PINK /

GREEN / YELLOW /
TURQUOISE / RED

� ��

NLS NATIVE
LANGUAGE
SUPPORT

None � ��

NOA NO ALARM SOUND ALARM �
NOB NO BLINK BLINK �
NOC NO COLOR COLOR � ��

NOD NON
DETECTABLE

DETECTABLE � �

NOF NO FULL
DISPLAY

FULL DISPLAY

Chapter 3 MANTIS programming language

116 P39-5002-00

Attribute
abbreviation

Attribute name

Related attributes

Returned
by attribute
function

Can be set
by attribute
statement

NOH NO HIGHLIGHT HIGHLIGHT �
NOK NOKANJI KANJI
NOL NO LEFT BAR LEFT BAR �
NOM NO MIX MIX �
NOO NO OVERLINE OVERLINE �
NOR NORMAL BRIGHT / HIDDEN � ��

NOU NO UNDERLINE UNDERLINE /
UNDERLINE FULL
FIELD

 �

NRB NO RIGHT BAR RIGHT BAR �
NUM NUMERIC HEADING / KANJI /

TEXT
�� �

OVE OVERLINE NO OVERLINE � ��

PBO PROTECT
BOTTOM LINE

BOTTOM LINE
ENTERABLE

� �

PIN PINK NEUTRAL / BLUE /
GREEN / YELLOW /
TURQUOISE / RED

� ��

PRO PROTECTED UNPROTECTED � ��

RAN RANGE CHECK None �� �

RBA RIGHT BAR NO RIGHT BAR � ��

RED RED NEUTRAL / BLUE /
YELLOW / GREEN /
TURQUOISE / PINK

� ��

REQ REQUIRED None �� �

RES RESET None �
REV REVERSE VIDEO VIDEO / REVERSE

FULL FIELD
� ��

ATTRIBUTE

MANTIS Language 117

Attribute
abbreviation

Attribute name

Related attributes

Returned
by attribute
function

Can be set
by attribute
statement

RFF REVERSE FULL
FIELD

REVERSE VIDEO /
VIDEO

 �

RMM RESET MAP
MODIFIED

KEEP MAP
MODIFIED

 �

SAF SEND ALL
FIELDS

SEND MODIFIED
FIELDS

� ��

SMF SEND MODIFIED
FIELDS

SEND ALL FIELDS �

TUR TURQUOISE NEUTRAL / BLUE /
PINK / GREEN /
RED / YELLOW

� ��

TXT TEXT HEADING /
NUMERIC / KANJI

�� �

UFF UNDERLINE FULL
FIELD

UNDERLINE / NO
UNDERLINE

 �

UNB UNBOXED BOXED �
UND UNDERLINE NO UNDERLINE /

UNDERLINE FULL
FIELD

� ��

UNM UNMODIFIED MODIFIED �
UNP UNPROTECTED PROTECTED � ��

UPP UPPERCASE LOWERCASE �
VID VIDEO REVERSE VIDEO /

REVERSE FULL
FIELD

 �

YEL YELLOW NEUTRAL / BLUE /
PINK / GREEN /
TURQUOISE / RED

� ��

Chapter 3 MANTIS programming language

118 P39-5002-00

AUTOSKIP
NO AUTOSKIP

Description Specifies whether the cursor will skip automatically to the next
unprotected data field when a user fills the current field, or specifies that
the terminal can support this attribute.

Format AUTOSKIP or NO AUTOSKIP

Considerations

♦ This attribute can also be specified in Screen Design. Refer to
MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for more
information.

♦ This attribute is functionally identical to a following blank-fill character,
but uses less storage that a blank-fill character.

BLINK
NO BLINK

Description Specifies whether you want one field, all nonheading fields on the screen
to blink, or specifies that the terminal can support this attribute.

Format BLINK or NO BLINK

Considerations

♦ This attribute can also be specified in Screen Design. Refer to
MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for more
information.

♦ The three attributes, UNDERLINE, BLINK, and REVERSE VIDEO,
are considered as a group to be HIGHLIGHT. If you are specifying
these attributes, you only get a choice of one (that is, the attributes
are mutually exclusive). When you specify HIGHLIGHT, MANTIS
uses the first attribute in the list (UNDERLINE, BLINK, and
REVERSE VIDEO) that is supported by the current terminal.

♦ See also the “HIGHLIGHT” attribute on page 121.

ATTRIBUTE

MANTIS Language 119

BOXED
UNBOXED

Description Specifies whether a box should be created around one field, all
nonheading fields on a screen, or that the terminal can support this
attribute.

Format BOXED or UNBOXED

Considerations

♦ This attribute can also be specified in Screen Design. Refer to
MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for more
information.

♦ See also the “HIGHLIGHT” attribute on page 121.

BRIGHT
NORMAL
HIDDEN

Description Specifies whether a field, all nonheading fields on a screen, displays in
bright, normal, or hidden intensity. Also specifies that the terminal can
support this attribute.

Format BRIGHT, NORMAL, or HIDDEN

Consideration This attribute can be specified in Screen Design using the INTENSITY
attribute. Refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for
more information.

Chapter 3 MANTIS programming language

120 P39-5002-00

CURSOR
NO CURSOR

Description Indicates whether the initial cursor position is in the field when you
converse the screen.

Format CURSOR or NO CURSOR

Considerations
♦ When more than one field on a screen has the cursor set by screen

design, the first one (in a left to right top to bottom order) has the
cursor positioned in it. If that first field has the attribute set to NO
CURSOR (NCU), the next such field contains the cursor. If there are
no more such fields, the hardware positions the cursor in the first
unprotected field.

♦ Using the statement ATTRIBUTE(map,field)=CUR turns off the
cursor for all fields in the map except the nominated field. Therefore,
when the cursor has been set to multiple fields, the most recent one
set will contain the cursor. MANTIS does not remember prior fields’
CURSOR settings if you specify NCU for a field that currently has the
cursor attribute; MANTIS reverts to the rule in the prior consideration.
This statement does not affect any other maps in the map set; any
cursor settings for other maps will remain.

♦ Using the statement ATTRIBUTE(map,field)=“RES” or
ATTRIBUTE(map)=“RES” restores the original screen design values
for cursor setting. (See the RESET attribute for more information.)

♦ This attribute can also be specified in Screen Design. Refer to
MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for more
information.

♦ If you specify more than one field containing the cursor, the last
specification is used. ATTRIBUTE(TERMINAL) =(row,col) takes
precedence over all field cursor specifications.

♦ ATTRIBUTE(TERMINAL,CURSOR) =“(row,col)” takes precedence
over all field cursor specifications.

ATTRIBUTE

MANTIS Language 121

DETECTABLE
NON DETECTABLE

Description Specifies if one field, or all nonheading fields on a screen will be pen
detectable.

Format DETECTABLE or NON DETECTABLE

Consideration This attribute can also be specified in Screen Design. Refer to MANTIS
Facilities, OS/390, VSE/ESA, P39-5001, for more information.

FULL DISPLAY
NO FULL DISPLAY

Description Indicates that MANTIS expand the screen size to the dimensions of the
current terminal, including the bottom two lines of the screen.

Format FULL DISPLAY or NO FULL DISPLAY

Consideration If you specify this attribute, you cannot use the key simulation field (or the
KILL command). You cannot initiate window mode, and you cannot use
the OBTAIN or SHOW statements for CONVERSE.

HIGHLIGHT
NO HIGHLIGHT

Description Indicates that a field or all nonheading fields on a screen are highlighted
when they display.

Format HIGHLIGHT or NO HIGHLIGHT

Considerations

♦ This attribute can also be specified in Screen Design. Refer to
MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for more
information.

♦ The three attributes, UNDERLINE, BLINK, and REVERSE VIDEO,
are considered as a group to be HIGHLIGHT. If you are specifying
these attributes, you only get a choice of one (that is, the attributes
are mutually exclusive). When you specify HIGHLIGHT, MANTIS
uses the first attribute in the list (UNDERLINE, BLINK, and
REVERSE VIDEO) that is supported by the current terminal.

Chapter 3 MANTIS programming language

122 P39-5002-00

KEEP MAP MODIFIED
RESET MAP MODIFIED

Description Prevents MANTIS from clearing the modified data tags of a specified
screen.

Format KEEP MAP MODIFIED or RESET MAP MODIFIED

Considerations

♦ Specify KMM to prevent MANTIS from clearing modified data tags (or
MDT’s) of the specified screen or MODIFIED (map,field) function.
Ordinarily, MANTIS clears MDT’s of all maps in the map set for a
CONVERSE UPDATE, and for the prior active map in the case of
CONVERSE SET. If the MDT’s are cleared, a previously modified
map returns FALSE for the MODIFIED function. If a map has
attribute “KMM”, then once modified, the MODIFIED function always
returns TRUE until the map is reCONVERSEd or CLEARed. For an
explanation of maps and map sets, see the CONVERSE statement.

♦ Specify Reset Map Modified (RMM) to turn off KMM and restore
ordinary functionality.

♦ Use KMM if you will converse additional screens in the map set (e.g.,
pop-ups) and want to retain the MODIFIED setting for additional
validation after the CONVERSE of the additional screen.

LEFT BAR
NO LEFT BAR

Description Indicates that a left bar appears on one field, or on all nonheading fields
on a screen.

Format LEFT BAR or NO LEFT BAR

Consideration This attribute can also be specified using the BOX attribute in Screen
Design. Refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001.

ATTRIBUTE

MANTIS Language 123

MIX
NO MIX

Description Indicates that one field or all nonheading fields on a screen support
mixed-data.

Format MIX or NO MIX

Considerations

♦ The field-level attribute MIX enables you to do the codes SO/SI
(Shift-out and Shift-in) creation from the terminal.

♦ The attribute NO MIX disables the SO/SI creation.

♦ This attribute can also be specified in Screen Design. Refer to
MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for more
information.

♦ You cannot reset the field-level MIX/NO MIX attribute using the
RESET attribute.

♦ See “Mixed-data support” on page 579 for more information.

MODIFIED
UNMODIFIED

Description Indicates whether the terminal should send field contents, regardless of
whether or not you modified them, to MANTIS when you press ENTER or
a PF key.

Format MODIFIED or UNMODIFIED

Consideration The MODIFIED attribute forces the terminal hardware to always send the
contents of the field back to the Data Work Area when you press ENTER
or a PF key. This is normally not required because MANTIS keeps all
values sent to the screen. It may be needed in order for some terminal
emulators or screen scrapers work.

Chapter 3 MANTIS programming language

124 P39-5002-00

NATIVE LANGUAGE SUPPORT
NLS(xxx)

Description Specifies an alternate translation table is to be used for upper and lower
case translation to and from this terminal, and for the programs running.

Format NATIVE LANGUAGE SUPPORT
that is NLS(xxx)

Options xxx must be null or one of the following:

Code Language Code Language
AFR Afrikaans ITS Swiss Italian
ARA Arabic JPN Japanese
BEL Byelorussian KOR Korean
BGR Bulgarian MKD Macedonian
CAT Catalan NLD Dutch
CHT Traditional Chinese NLB Belgian Dutch
CHS Simplified Chinese NON Norwegian Nynorsk
CSY Czech NOR Norwegian
DAN Danish PKL Polish
GER German PTB Brazilian Portuguese
DES Swiss German PTG Portuguese
ELL Greek RMS Rhaeto-Romanic
ENA Australian English ROM Romanian
ENG UK English RUS Russian
ENU US English SKY Slovakian
ENP English (uppercase) SLO Slovenian

ATTRIBUTE

MANTIS Language 125

Code Language Code Language
ESP Spanish SQI Albanian
FIN Finnish SRB Serbian (Cyrillic)
FRA French SRL Serbian (Latin)
FRB Belgian French SVE Swedish
FRC Canadian French THA Thai
FRS Swiss French TRK Turkish
GAE Irish Gaelic UKR Ukrainian
HEB Hebrew URD Urdu
HRV Croatian U01 User-defined 1
HUN Hungarian U02 User-defined 2
ISL Icelandic U03 User-defined 3
ITA Italian U04 User-defined 4

Considerations

♦ xxx must be one of the languages in the previous list, and must be
present in an installation defined table set by your Master User.
NLS() resets the value to the current language. The following
hierarchy defines this current language. MANTIS defines the
language from the information found in these areas:

- Language set by previously executed LANGUAGE statement.

- Language defined in the User Profile.

- Language set by installation default.

 See “LANGUAGE (Statement)” on page 306 for more information.

Chapter 3 MANTIS programming language

126 P39-5002-00

NO COLOR
NEUTRAL/BLUE/ PINK/GREEN/TURQUOISE/RED/YELLOW

Description Indicates that one field or all nonheading fields on a screen display
without color or with one of the available colors. Also indicates that the
terminal can support this attribute.

Format NO COLOR or NEUTRAL/BLUE/
PINK/GREEN/TURQUOISE/RED/YELLOW

Consideration This attribute can also be specified in Screen Design. Refer to MANTIS
Facilities, OS/390, VSE/ESA, P39-5001, for more information.

OVERLINE
NO OVERLINE

Description Specifies whether a line appears over a field, or over all nonheading
fields on a screen.

Format OVERLINE or NO OVERLINE

Consideration This attribute can also be specified in Screen Design. Refer to MANTIS
Facilities, OS/390, VSE/ESA, P39-5001, for more information.

PROTECT BOTTOM LINE
BOTTOM LINE ENTERABLE

Description Disallows or allows text to be entered on the bottom line of a screen or
map.

Format PROTECT BOTTOM LINE or BOTTOM LINE ENTERABLE

Considerations

♦ This attribute can also be specified in Screen Design. Refer to
MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for more
information.

♦ If you specify this attribute, you cannot use the key simulation field (or
the KILL command). You cannot initiate window mode, and you
cannot use the OBTAIN statement.

ATTRIBUTE

MANTIS Language 127

PROTECTED
UNPROTECTED

Description Disallows or allows one field or all nonheading fields on a screen to be
altered.

Format PROTECTED or UNPROTECTED

Consideration This attribute can also be specified in Screen Design. Refer to MANTIS
Facilities, OS/390, VSE/ESA, P39-5001, for more information.

RESET

Description Returns attributes to the original specifications made in Screen Design
for one field, or all fields and the screen.

Format RESET

Considerations

♦ Using the statement ATTRIBUTE(map)=RES also restores the
Screen Design values for cursor setting. (See the “CURSOR/NO
CURSOR” attribute on page 120 for more information.)

♦ The RESET attribute resets all field-level attributes except MIX/NO
MIX.

Chapter 3 MANTIS programming language

128 P39-5002-00

REVERSE VIDEO
REVERSE FULL FIELD
VIDEO

Description Indicates whether a field, screen, or terminal displays in reverse video
mode.

Format REVERSE VIDEO, REVERSE FULL FIELD, and VIDEO

Considerations

♦ This attribute can also be specified in Screen Design. Refer to
MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for more
information.

♦ The three attributes, UNDERLINE, BLINK, and REVERSE VIDEO,
are considered as a group to be HIGHLIGHT. If you are specifying
these attributes, you only get a choice of one (that is, the attributes
are mutually exclusive). When you specify HIGHLIGHT, MANTIS
uses the first attribute in the list (UNDERLINE, BLINK, and
REVERSE VIDEO) that is supported by the current terminal.

♦ See also the “HIGHLIGHT” attribute on page 121.

♦ REVERSE FULL FIELD is supported for compatibility with other
MANTIS platforms, and is converted to and reported as the REV
option.

RIGHT BAR
NO RIGHT BAR

Description Indicates that a right bar appears on one field, or on all nonheading fields
on a screen.

Format RIGHT BAR or NO RIGHT BAR

Consideration This attribute can also be specified using the BOX attribute in Screen
Design. Refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for
more information.

ATTRIBUTE

MANTIS Language 129

SEND ALL FIELDS
SEND MODIFIED FIELDS

Description Indicates whether all fields, or just nonheading (data) fields, are sent to
the terminal.

Format SEND ALL FIELDS or SEND MODIFIED FIELDS

Consideration If a single map is being reCONVERSEd, MANTIS normally only sends
the data fields and leaves the heading fields (SMF). When specifying
SAF (send all fields), MANTIS will always resend data and heading fields.
SAF can be used for terminals and terminal emulators that do not
efficiently or correctly handle resending data fields and leaving heading
fields.

SOUND ALARM
NO ALARM

Description Specifies whether MANTIS will sound an alarm each time the screen is
CONVERSEd.

Format SOUND ALARM or NO ALARM

Consideration This attribute can also be specified in Screen Design. Refer to MANTIS
Facilities, OS/390, VSE/ESA, P39-5001, for more information.

Chapter 3 MANTIS programming language

130 P39-5002-00

UNDERLINE
UNDERLINE FULL FIELD
NO UNDERLINE

Description Indicates whether a field or all nonheading fields on a screen are
underlined.

Format UNDERLINE, UNDERLINE FULL FIELD, or NO UNDERLINE

Considerations

♦ This attribute can also be specified in Screen Design. Refer to
MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for more
information.

♦ The three attributes, UNDERLINE, BLINK, and REVERSE VIDEO,
are considered as a group to be HIGHLIGHT. If you are specifying
these attributes, you only get a choice of one (that is, the attributes
are mutually exclusive). When you specify HIGHLIGHT, MANTIS
uses the first attribute in the list (UNDERLINE, BLINK, and
REVERSE VIDEO) that is supported by the current terminal.

♦ UNDERLINE FULL FIELD is supported for compatibility with other
MANTIS platforms, and is converted to and reported as the UND
option.

ATTRIBUTE

MANTIS Language 131

UPPERCASE
LOWERCASE

Description Indicates whether MANTIS will convert input to uppercase or not (left as
entered).

Format UPPERCASE or LOWERCASE

Considerations

♦ MANTIS 4.2 screens default to YES for UPPERCASE until you
convert them to 5.2 screens and set the default to NO.

♦ The translation of UPPERCASE on a systemwide basis follows this
hierarchy:

C$OPCUST TRCODE= Y Y Y N
ATTRIBUTE(TERMINAL)= LOW LOW UPP Any
Screen design UPPERCASE N Y Any Any
Translation occurs? No Yes Yes No

♦ This attribute can also be specified in Screen Design. Refer to
MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for more
information.

♦ ATTRIBUTE(map,field)=“UPP” is equivalent to Screen Design
UPPERCASE Y.

♦ ATTRIBUTE(map,field)=“LOW” is equivalent to Screen Design
UPPERCASE N.

Chapter 3 MANTIS programming language

132 P39-5002-00

Examples of the ATTRIBUTE statement
The following example sets the ACCT_NUM field associated with the
screen INVOICE to BRIGHT and PROTECTED:
00010 SCREEN INVOICE("PROGRAMA")

00020 ATTRIBUTE(INVOICE,ACCT_NUM)="BRIGHT,PROTECTED"

The following example shows several ways to set fields associated with
the screen INVOICE to BRIGHT, PROTECTED and CURSOR:
00010 SCREEN INVOICE("PROGRAMA")

00020 TEXT STANDARD(16),TEMP(16)

00030 STANDARD="PROTECTED"

00040 TEMP="CURSOR"

00050 ATTRIBUTE(INVOICE,ACCT_NUM)="BRIGHT" Set to "BRIGHT"
.

.

.

00160 ATTRIBUTE(INVOICE,ACCT_NUM)=STANDARD Adds "PROTECTED"
.

.

00240 ATTRIBUTE(INVOICE,ACCT_NUM)=TEMP Adds "CURSOR"
00350 ATTRIBUTE(INVOICE,CUST_NUM)="BRI,PRO,"+TEMP

00360 ATTRIBUTE(INVOICE,CUST_NAME)="BRI,PRO,CUR"

 One text expression
00440 ATTRIBUTE(INVOICE,(3,20))="BRI","PRO","CUR"

00450 ATTRIBUTE(INVOICE,LINEITEM)="BRI",TEMP,STANDARD

 Three text expressions

The following example resets attributes to screen design specifications:
00240 ATTRIBUTE(INVOICE)="RESET"

The following example sets all fields in the screen INVOICE to protected
and then unprotects only the OK field. This shows how related attributes
override, or undo, each other. After the CONVERSE, reset the attributes
to those in screen design for the next CONVERSE:
02010 ATTRIBUTE(INVOICE)="PRO"

02020 ATTRIBUTE(INVOICE,OK)="UNP"

02030 CONVERSE INVOICE

02040 ATTRIBUTE(INVOICE)="RESET"

The following example sets the map-level attributes “PROTECT
BOTTOM LINE” and “SOUND ALARM” in the screen INVOICE:
03010 ATTRIBUTE(INVOICE)="PBO,ALA"

ATTRIBUTE

MANTIS Language 133

The following example sets the terminal attribute “NATIVE LANGUAGE
SUPPORT” to US English (ENU):
03010 ATTRIBUTE(TERMINAL)="NLS(ENU)"

The following example sets the terminal attribute “NATIVE LANGUAGE
SUPPORT” to the default value.
03010 ATTRIBUTE(TERMINAL)="NLS()"

The following example shows how to use the ATTRIBUTE(TERMINAL)
and ATTRIBUTE(PRINTER) statements to set values:
00010 ATTRIBUTE(TERMINAL)="COLOR"

00020 ATTRIBUTE(PRINTER)="CLASS(1),(66,132)"

The following example places the cursor at location (15,15) on the
physical terminal (overrides all ATTRIBUTE(map,field)=“CUR”):
00010 ATTRIBUTE(TERMINAL,CURSOR)="(15,15)"

Chapter 3 MANTIS programming language

134 P39-5002-00

BIG
The BIG statement names and supplies the dimensions for numeric
variables. MANTIS creates an 8-byte numeric floating-point field (or an
array of 8-byte fields) and associates it with the name you specify.

BIG name1[(n1[,n2])]

 [,name2[(n1[,n2])] . . .]

name1

Description Required. Specifies the name of the numeric variable.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Consideration When the symbolic name is previously defined, MANTIS bypasses this
definition.

n1

Description Optional. Specifies the number of elements in a 1-dimensional array, or
the number of rows in a 2-dimensional array.

Default 1

Format Arithmetic expression that evaluates in the range 1–255

Consideration MANTIS rounds n to an integer value.

BIG

MANTIS Language 135

n2

Description Optional. Specifies the number of columns in a 2-dimensional array.

Default 1

Format Arithmetic expression that evaluates to a positive integer in the range 1–
255

Consideration MANTIS rounds n to an integer value.

General considerations

♦ You can specify up to 2048 variable names in a single program.

♦ A BIG variable contains a zero upon initial definition.

♦ Use BIG (instead of SMALL) to hold numbers involving fractions or
more than 6 integer digits. (See “Numeric data” on page 41.)

♦ If n2 is not specified, or is specified as 1, a one-dimensional array is
allocated. If n1 is not specified, a small scalar variable is allocated.

♦ If you do not specify a variable name before its first use, it will default
to a BIG data type.

♦ See also “KANJI (Kanji users only)” on page 298, “SMALL” on
page 415, “TEXT” on page 457, and “Numeric data” on page 41.

Example
00010 X=15

00020 BIG ALPHA(64,3),BETA(12)

Chapter 3 MANTIS programming language

136 P39-5002-00

BREAK
Use the BREAK statement to exit from a FOR-END, UNTIL-END,
WHEN-END, or WHILE-END statement. The statement after the END
statement is executed next.

BREAK

General considerations
♦ With nested logic statements, BREAK terminates execution of the

innermost FOR-END, UNTIL-END, WHEN-END, or WHILE-END
block of statements where it occurs.

♦ BREAK from a WHEN-END block of statements bypasses any other
WHEN conditions.

♦ See also “NEXT” on page 335 and “RETURN” on page 388.

Examples The following example shows how the BREAK statement can be used to
exit a FOR-END condition:

10 FOR L=1 TO MAXLINES:| For each screen line

20 .GET CUSTOMER LEVEL=L:| Get customer detail fields

30 .IF CUSTOMER="END":| Check status from GET

40 ..BREAK:|Exit FOR Loop if end of file

50 .END to statement 70.

60 END

70 CONVERSE CUST_DETAILS:| Display customer details

The following example shows how the BREAK statement can be used to
exit a WHEN-END condition:
110 WHEN CODE="R"

120 .COLOR="RED"

130 .BREAK <---- will continue at line 210
140 WHEN CODE="B"

150 .COLOR="BLUE"

160 .BREAK <---- will continue at line 210
170 WHEN CODE="G"

180 .COLOR="GREEN"

190 .BREAK <---- will continue at line 210
200 END

210 DO DISPLAY_ORDER

.

.

CALL

MANTIS Language 137

CALL
The CALL statement invokes an interface program. MANTIS calls the
program specified in the interface profile and sets the symbolic name
variable equal to the status returned by the program.

CALL interface[(e1,e2...)][LEVEL=n]

interface

Description Required. Specifies the interface name (as defined in a previously
executed INTERFACE statement).

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

e1, e2

Description Optional. Specifies the elements to be passed to the corresponding
element in the interface area (e1 is the first element in the interface area
layout, e2 is the second, and so on).

Format Must be a valid variable name, or an arithmetic, text, or DBCS expression

Consideration If you don’t specify e1, ..., en, the values passed to the interface program
are the current values of the fields defined in the interface layout.

Chapter 3 MANTIS programming language

138 P39-5002-00

LEVEL=n

Description Optional. Specifies the buffer number that is passed to the interface
program.

Default 1

Format Arithmetic expression that evaluates to a value in the range of 1 through
n, where n is the maximum buffer number, as defined in the
corresponding INTERFACE statement

Considerations

♦ Only specify LEVEL=n when the INTERFACE has buffers defined.

♦ MANTIS uses only the integer portion of n.

♦ Variables defined as single level in interface design do not get
subscripted by the level number.

General considerations

♦ Use this statement only after discussing the interfaces that are
available to you with your Master User.

♦ The interface program is free to do any I/O operations, including I/O
operations to the terminal. If you do updates (VSAM, TOTAL, SQL,
or RDM), you must issue a COMMIT in the MANTIS program prior to
a conversational mode CONVERSE, SHOW, WAIT, or OBTAIN
statement. Alternatively, you could specify customization parameter
COMFACE=Y which will ensure that a COMMIT is issued at the next
terminal I/O. For details about the COMFACE parameter, refer to
MANTIS Administration, OS/390, VSE/ESA, P39-5005.

♦ See TOTAL and VIEW ON/OFF if your interface programs do sign
offs or sign ons, or expect a certain state (on or off) when they are
invoked.

♦ See also “DO” on page 206, “INTERFACE” on page 295,
“PERFORM” on page 350, the ON and OFF parameters under
“TOTAL” (“TOTAL” starts on page 464), and the ON and OFF
parameters under “VIEW” (“VIEW” starts on page 501).

Example The following example shows how the CALL statement is used to invoke
an interface called “MASTER(GET)”:
00020 INTERFACE MASTER("CUSTOMERS","ALIBABA",10)
.
.
.

00060 CALL MASTER("GET",1234) LEVEL=2

CHAIN

MANTIS Language 139

CHAIN
The CHAIN statement replaces the program currently executing with
another MANTIS program and begins executing that program. MANTIS
terminates the issuing program and erases all variables, except those
being passed.

CHAIN"[library:] program-name"[,argument1, argument2, . . .] [LEVEL]

"[library:] program-name"

Description Required. Specifies the name of the MANTIS program you want to load
and executes the target program.

Format 1–49 character text expression

Considerations

♦ If the program is in another user’s library, you can access it by
specifying the name of the user in whose library it resides, followed
by a colon and the program name: [library1:]program-name.

♦ If the subroutine is in your library, you can specify only the program
name.

♦ This parameter is translated to uppercase upon execution of your
program.

♦ If the text expression is enclosed in parentheses, the MANTIS XREF
facility will not index the name, even if the name is a text literal inside
the parentheses. For example, the following will not cross-reference
the MANTIS program “ABC”:
CHAIN("ABC")

Chapter 3 MANTIS programming language

140 P39-5002-00

argument1, argument2

Description Optional. Specifies the argument(s) to be passed to the new program.

Considerations

♦ The arguments must be previously defined, unsubscripted variable
names (constants, literals, reserved words and expressions are not
allowed). A maximum of 40 arguments is allowed.

♦ The arguments in the CHAIN statement must be simple data types:
BIG, SMALL, TEXT, DBCS, or KANJI scalars or arrays. The
arguments cannot be symbolic SCREEN, PROGRAM, ENTRY, FILE,
INTERFACE, TOTAL, ACCESS, or RDM VIEW names.

♦ The arguments in a CHAIN statement define the type and
dimensions for the corresponding variables in the program that you
are chaining to.

♦ All or none of the parameters on the target program’s ENTRY
statement must be passed as arguments. If no arguments are
passed, the target program must define the parameters and assign
initial values.

CHAIN

MANTIS Language 141

LEVEL

Description Optional. Allows an external program to chain to another program that
then becomes a subroutine of the original caller, and not a new
DOLEVEL 0 program. When the CHAINed to program EXITS, it returns
to the original calling program.

Considerations

♦ A CHAIN LEVEL at DOLEVEL 0 operates exactly like a CHAIN
without the LEVEL.

♦ When an external program CHAINs to another program, that
program becomes a subroutine of the original caller, not a new
DOLEVEL 0 program. If you specify a level, when the CHAINed-to
program EXITs, it returns to the original calling program as illustrated
below.

A

B C D

E F

CHAIN LEVELCHAIN LEVEL

CHAIN LEVEL

EXIT

EXIT

♦ Arguments passed on a CHAIN ... LEVEL can be defined in the
current program, or can have external do parameters that were
passed to the current program.

Chapter 3 MANTIS programming language

142 P39-5002-00

General considerations

♦ If the program is in another user’s library, you can access it by
specifying the name of the user in whose library it does reside,
followed by a colon and the program name:

[libraryname1:]program-name

 If the program is in your library, you can specify only the program
name.

♦ Do not execute this statement while in programming mode without
first saving the program that issued the CHAIN. Because the
program being chained into the workspace overlays the issuing
program, any alterations to the issuing program are lost.

♦ While in programming mode, the program being chained to must
have the same password as the current program or the current user’s
password. This restriction does not apply in a program running
outside programming mode, for example, if you use the Run a
Program by Name facility (refer to MANTIS Facilities, OS/390,
VSE/ESA, P39-5001).

♦ You can pass data from one program to another using the CHAIN
statement. This requires an ENTRY-EXIT statement in the target
program. The ENTRY-EXIT statement must be the first statement in
the program that you are chaining to.

♦ This statement can be affected by the Program Load Exit. See your
Master User for details.

♦ CHAIN without level releases enqueues on external VSAM files
created by GET . . . ENQUEUE.

♦ The library:program-name argument for the CHAIN statement is
translated to uppercase upon execution of your program.

♦ Since a CHAIN statement leaves a program without a return,
MANTIS will not execute any statement following a CHAIN on a
program line.

♦ Executing a STOP or the main ENTRY's EXIT statement will cause
an automatic CHAIN to the user's defined Facility program when run
outside programming mode. For details about the facility program
specification, refer to MANTIS Administration, OS/390, VSE/ESA,
P39-5005.

♦ See also “DO” on page 206 and “ENTRY-EXIT” on page 213.

CHAIN

MANTIS Language 143

Example
00010 ENTRY BUZZ_PHRASE_GENERATOR

00020 .DO SET_UP_VOCABULARY

00030 .HEAD "BUZZ PHRASE GENERATOR"

00040 .CLEAR

00050 .SHOW "I WILL GENERATE A SCREEN FULL OF"

00055 .'"'BUZZ PHRASES' EVERY"

00060 .'" TIME YOU HIT 'ENTER'. WHEN YOU WANT TO"

00065 .'"STOP, HIT 'PA2'."

00070 .UNTIL KEY="CANCEL"

00080 ..INDEX=1

00090 ..UNTIL INDEX=22

00100 ...A=INT(RND(10)+1)

00110 ...B=INT(RND(10)+1)

00120 ...C=INT(RND(10)+1)

00130 ...SHOW FIRST(A)+" "+SECOND(B)+" "+NOUN(C)

00140 ...INDEX=INDEX+1

00150 ..END

00160 ..WAIT

00170 .END

00180 .CHAIN "GAMES_MENU"

00190 EXIT

Chapter 3 MANTIS programming language

144 P39-5002-00

CHR
Use the CHR (character) function to return a text value consisting of the
character corresponding to the EBCDIC code specified.

CHR(a)

Description Required. Specifies the EBCDIC code whose character you want
returned.

Format Valid arithmetic expressions in the range of 0–255

Considerations

♦ MANTIS uses only the integer portion of a. For example,
CHR(130.5) returns “b”; the .5 is ignored.

♦ If the expression's value is outside the valid range, MANTIS will
attempt to use the value modulo (MOD) 256; the number is divided
by 256 and the remainder is used.

Examples

Example Results Comments
CHR(97) "/"
CHR(129) "a"
CHR(1024+129) "a" Modulo 256 ignores

1024
CHR(193) "A"

The CHR and ORD functions depend on the machine architecture.
Results will be different for code moved to an ASCII machine.

CLEAR

MANTIS Language 145

CLEAR
Use the CLEAR statement to clear the scroll map display, clear the data
referred to by the symbolic name of a complex entity, or a specific
variable name, or clear all program data.

CLEAR
[, . . .]

ALL

name �

�
�

�

�
�

name

Description Optional. Specifies a symbolic name of a complex entity as defined in an
ACCESS, BIG, DBCS, KANJI, FILE, INTERFACE, SCREEN, SMALL,
TEXT, TOTAL, or VIEW statement. CLEAR name can also specify a
single variable name. MANTIS clears the data referred to by the
specified name.

Chapter 3 MANTIS programming language

146 P39-5002-00

ALL

Description Optional. Clears the data referred to by all symbolic and variable names
in your program.

General considerations

♦ CLEAR with no parameter:

- On an unformatted screen, MANTIS clears all data that appeared
in the last display of the unformatted screen. Data that was
added (via SHOW statements) after the last display and before
the CLEAR statement still appears at the next display.

- On a formatted screen, MANTIS clears the map set. Clearing
the map set refers to the list of maps to be displayed on the next
CONVERSE without WAIT. It does not refer to resetting the
variables associated with the list of maps. To reset all variables
associated with all maps in the map set, use individual CLEAR
statements with a screen name. For example:
CONVERSE MAP1 WAIT

CONVERSE MAP2 WAIT

CLEAR :|(Does not reset any fields in MAP1 or MAP2)
CONVERSE MAP3 SET :|(Displays only fields from MAP3)

- Use clear with no parameter to clear the map set. A new map
set is initiated at the next CONVERSE, even if the CONVERSE
contains a WAIT or SET.

- CLEAR without a screen-name does not affect the value of any
screen-name variable, but sets KEY to “CLEAR”.

♦ CLEAR with the symbolic name of a numeric variable or array:

- MANTIS sets the value of the variable (or each element of the
array) to zero.

- If the variables are automatically mapped, the values for related
variables are also cleared.

CLEAR

MANTIS Language 147

♦ CLEAR with the symbolic name of a TEXT or KANJI/DBCS variable
or array:

- MANTIS sets the current length of the variable (or each element
of the array) to zero, giving it the null value “”.

- If the variables are automatically mapped, the values for related
variables are also cleared.

♦ CLEAR with the symbolic name of a SCREEN:

- MANTIS resets all variables associated with the screen design to
zero, if numeric, or a current length of zero, if TEXT or
DBCS/KANJI (“” or K“ ”), and sets the value of the screen-name
variable to empty string(“”), but does not affect the KEY function.

- If variables in the screen are automatically mapped, the values
for related variables, fields, and other entities are also cleared.

- MODIFIED (MAP) and MODIFIED(MAP,FIELD) are FALSE
following a CLEAR MAP, until the next CONVERSE MAP.

- Clearing the screen does not reset the field attributes.

♦ CLEAR with the symbolic name of an entity defined by an ACCESS,
FILE, INTERFACE, TOTAL, or VIEW statement:

- MANTIS clears the values of all variables and arrays (including
all LEVELs) associated with the entity. In addition, MANTIS
clears the value that is returned when the symbolic name is used
to invoke a built-in text function. CLEAR resets the values; it does
not change the definition of the symbolic names.

♦ CLEAR with the ALL parameter:

- MANTIS clears the values of all the variables and entities defined
in the current program. Variables in programs at higher levels
are not affected.

Chapter 3 MANTIS programming language

148 P39-5002-00

Example
10 BIG COUNT,SUBTOTAL(10)

20 FILE CUSTFILE("CUSTOMERS","XANADU")

30 SCREEN CUSTSCREEN("CUSTOMER")

.

.

.

60 CLEAR COUNT,SUBTOTAL,CUSTFILE,CUSTSCREEN

The previous example will set the variable COUNT to zero, and each of
the 10 elements of SUBTOTAL to zero. The file CUSTFILE will be set to
a status of “” and each field in the file view will be set to zero (if numeric)
or the current length set to zero (if TEXT or KANJI/DBCS). The last key
field pressed in screen CUSTSCREEN will be set to “”, and all variables
associated with the screen design to zero (if numeric) or a current length
of zero (if TEXT or KANJI/DBCS).

COMMIT

MANTIS Language 149

COMMIT
Indicate the completion of a Logical Unit of Work (LUW), or toggle
automatic COMMIT processing with the COMMIT statement. COMMIT
with no parameters commits pending database updates and prevents
them from being backed out by RESET or a system failure. COMMIT
with no parameter also flushes updated buffers for the MANTIS cluster
and the external files.

COMMIT
ON

OFF
�

�
�

�

�
�

ON

Description Optional. Indicates that you want MANTIS to perform automatic
COMMIT processing before each read operation on your terminal (e.g.,
on every CONVERSE, OBTAIN, PROMPT, SHOW (with a screenful of
data) or a WAIT statement).

OFF

Description Optional. Indicates that you do not want MANTIS to perform automatic
COMMIT processing before each read operation on your terminal.

Considerations

♦ Automatic COMMIT processing is initially enabled. If the Logical
Units of Work in your application are not synchronized, or do not
need to be synchronized with terminal reads, use COMMIT OFF to
disable automatic COMMIT processing and use the COMMIT
statement programmatically to indicate the completion of each
Logical Unit of Work.

♦ Using the OFF option sets a pseudo-conversational task to a
conversational task for the life of the COMMIT OFF. A COMMIT
OFF is reset at CHAIN, STOP and fault (run mode), at CHAIN
(programming mode); or, until a COMMIT ON is specified.

Chapter 3 MANTIS programming language

150 P39-5002-00

General considerations

♦ When automatic COMMIT is enabled, (COMMIT set to ON),
MANTIS automatically issues a COMMIT prior to any terminal I/O
only if an update to the TOTAL DBMS, the RDM logical view, DLI,
SQL, or a MANTIS or external file has occurred since the last
terminal I/O. You must issue a COMMIT prior to a terminal I/O for file
I/O updates executed in an interface program because MANTIS is
not aware of these updates. Alternatively, you can set the
customization parameter COMFACE=Y which will ensure that a
COMMIT is issued at the next terminal I/O. For details on the
COMFACE parameter, refer to MANTIS Administration, OS/390,
VSE/ESA, P39-5005. You can issue COMMITs at other points to
control the Logical Unit of Word between terminal I/O.

♦ COMMIT with no parameter:

- MANTIS immediately issues a COMMIT causing all pending
updates to be committed.

- If you issue a COMMIT while holding an enqueued resource,
MANTIS automatically dequeues the resource.

- COMMIT forces a COMMIT on all file types. If you do I/O in an
interface, MANTIS commits the I/O.

- MANTIS commits SQL updates to the SQL database.

♦ COMMIT in batch MANTIS programs causes a temporary close on
every accessed VSAM file. A high I/O rate can result. Your Master
User may choose to disable this function.

Issue a COMMIT following a TOTAL statement to avoid locking the
system resource table if TOTAL support is in the system and the
user profile is set to automatically open the TOTAL database files
while executing the TOTAL statement.

♦ MANTIS for IMS does not support the ENQUEUE, DEQUEUE, and
COMMIT statements. To maintain compatibility with other MANTIS
versions, these statements may remain in existing programs.
MANTIS for IMS will ignore the statements.

♦ See also “RESET” on page 387.

COMMIT

MANTIS Language 151

Example The following example shows how the COMMIT statement is used within
a program with three partial inserts to show that all insertions are
complete:

000070 WHILE MAINREC<>"END"

000080 ..GET MAINREC

000090 ..INSERT PARTIAL1

000100 ..IF PARTIAL1="ERROR"

000110 ...SHOW"ERROR OCCURRED ON 1ST INSERT":WAIT

000120 ..ELSE

000130 ...INSERT PARTIAL2

000140 ...IF PARTIAL2="ERROR"

000150RESET

000160SHOW"ERROR OCCURRED ON 2ND INSERT, 1ST INSERT BACKED-OUT":WAIT

000170 ...ELSE

000180INSERT PARTIAL3

000190IF PARTIAL3="ERROR"

000200RESET

000210SHOW"ERROR OCCURRED ON 3RD INSERT, 1ST & 2ND INSERT BACKED-OUT":WAIT

000230ELSE

000240COMMIT

000250SHOW"ALL THREE INSERTS SUCCESSFUL, PROCESSING NEXT RECORD":WAIT

000260END

000270 ...END

000280 ..END

000290 .END

Chapter 3 MANTIS programming language

152 P39-5002-00

The following example uses COMMIT OFF:
10 ENTRY CUSTOMER_PROG

20 SCREEN CUST_SCR("CUSTOMER_INPUT_SCR")

30 ACCESS CUST_FILE("CUSTOMER_FILE", "XRPT")

40 ACCESS CUST_CHECK("CUSTOMER_CHECK", "XRPT")

50 COMMIT OFF Task is set to conversational
60 WHILE CUST_FILE < > "END"

70 .CONVERSE CUST_SCR No automatic COMMIT occurs
80 .IF CUST_FILE_NUMBER = CUST_CHECK_NUMBER

90 ..UPDATE CUST_FILE

100 ..COMMIT Updates are committed,
110 .END end of LUW
.

.

.

150 .END

COMPONENT

MANTIS Language 153

COMPONENT
When coded in a MANTIS source program, the COMPONENT statement
identifies each component that can be assembled by the Compose action
into expanded component code in a composed (executable) program.
When displayed in a MANTIS composed executable program, the
COMPONENT statement identifies each component that can be
nominated and disassembled by the Decompose action into separate,
updated components.

If UPPERCASE = N has been specified in the Full Screen Editor, and you
are editing a composed (executable) program, the term COMPONENT
appears behind a comment bar, and therefore is not translated into
uppercase by MANTIS. If you nominate this component and then
attempt a Decompose, it will fail because the term COMPONENT is not
recognized in lowercase format. If your terminal is set to UPPERCASE =
N, make sure you enter the term COMPONENT in uppercase from the
keyboard.

COMPONENT"[library:] component-name [/password][/description]"

library:

Description Optional. Specifies the name of the user’s library where the component
resides.

Default Your sign-on library name

Format A MANTIS symbolic name, 1–16 characters in length, followed by a colon
(:) (see “Symbolic names” on page 24)

Consideration Although you can only compose a source program that resides in your
user library, you can specify a component from another user’s library in
the COMPONENT statement.

component-name

Description Required. Specifies the name of the component that is expanded in the
executable program.

Format A MANTIS symbolic name, 1–32 characters in length (see “Symbolic
names” on page 24)

Chapter 3 MANTIS programming language

154 P39-5002-00

/password

Description Conditional. Specifies the password used to previously save the
component.

Default Your sign-on password or last program password specified, preceded by
a slash (/)

Format A MANTIS symbolic name, 1–16 characters in length (see “Symbolic
names” on page 24)

Consideration Required only if the component resides in another user’s library and the
program password is different than your sign-on password.

/description

Description Optional. Specifies the text description of the component.

Format 1–46 characters of text

The description on the COMPONENT statement is optional and is used
only for user reference purposes. It is not used to create or update the
description when the component is saved or replaced.

General considerations

♦ The COMPONENT statement is required when using Component
Engineering Facility (CEF). At least one COMPONENT statement is
required in the source program for the Compose action to work, or an
error message is displayed when you attempt to issue the Compose
action.

♦ Code one COMPONENT statement in a MANTIS source program for
each component you want to use in your application design. If a
component contains an ENTRY/EXIT statement, code the
COMPONENT statement(s) after the last EXIT statement because
nested ENTRY/EXIT statements are not permitted. This is true only
if your components are bounded by ENTRY/EXIT statements (that is,
used for INTERNAL DOs). Components can be used to define large
blocks of global variables where an internal DO is not desirable.
Other SQL uses include creating INSERT and SELECT lists as well
as using COMPONENT in any other SQL statement.

COMPONENT

MANTIS Language 155

♦ Double quotes (“”) (or another character in some installations) are
required around the parameters of the COMPONENT statement, as
shown in Example 4. The colon (:) is required to separate library and
program name, and the slash character (/) is required to separate
password and description as shown.

♦ A text expression cannot be used in a component statement, the
library, component-name, password, and description must be
supplied as literals within quotes.

♦ COMPONENT statements cannot be continued from one line to the
next. Be sure each COMPONENT statement is a single statement
coded on a single line of a MANTIS source program.

♦ You can select the COMPONENT statement in the Full Screen Editor
with the S (select) line command for nested editing. For more
information about the S line command, refer to MANTIS Program
Design and Editing, OS/390, VSE/ESA, P39-5013.

♦ Components named in the COMPONENT statement(s) result in
expanded component code in the composed (executable) program
when you issue the Compose action on the source program.
Components are expanded in the order of the COMPONENT
statements coded in the source program.

♦ Source programs are not executable.

♦ See also “CSIOPTNS” on page 165, “DO” on page 206, “ENTRY-
EXIT” on page 213, “REPLACE” on page 383, and “SOURCE” on
page 417.

♦ For more information about the use of the COMPONENT statement
and the Compose and Decompose actions, refer to MANTIS
Program Design and Editing, OS/390, VSE/ESA, P39-5013.

Chapter 3 MANTIS programming language

156 P39-5002-00

Examples The following examples show the COMPONENT statement as it appears
in a source program, a composed (executable) program, and nominated
in a composed (executable) program for the Decompose action. To
nominate a COMPONENT statement, change the asterisk (*) to an at
sign (@) as shown:

Example Comments
00010 COMPONENT"ACCT:CUST_ERROR_PROC" Before Compose.
00010 |*COMPONENT"ACCT:CUST_ERROR_PROC" Composed (executable)

program after Compose.
00010 |@COMPONENT"ACCT:CUST_ERROR_PROC" Composed (executable)

program, component
nominated for update in
Decompose.

♦ The following example shows how to use the COMPONENT

statement to add several different components to your program:
00010 ENTRY CUST_INSERT

00020 REPLACE"ACCT:CUST_INSERT/DEPT1234/CUSTOMER RECORD INSERT PROGRAM"

00030 CSIOPTNS"COMMENTS=YES:FORCE=NO:SEQUENCE 10,10"

.

.

.

00520 EXIT

00530 COMPONENT"ACCT:CUS_INIT_FILE_HEADER/DEPT1234/INITIALIZE HEADING"

00540 COMPONENT"ACCT:CUS_ERROR_PROC/DEPT1234/ERROR PROCESSING ROUTINE"

00550 COMPONENT"ACCT:CUS_TERMINATE/DEPT1234/TERMINATE ROUTINE"

* A character other than @ may be used at your installation. See your
System Administrator if you have trouble using the @ character.

CONVERSE

MANTIS Language 157

CONVERSE
The CONVERSE statement sends a formatted screen design or map set
to a terminal and returns any response or alterations to the program.

CONVERSE [(,)]
WAIT
SET
UPDATE

 WINDOW
DISPLAY [(,)]

RELEASE

screen - name row1 col1 row2 col2
�

�

�
�

�

�

�
�

�

��
�

��

�

�

�
�
�
�

�

�

�
�
�
�

screen-name

Description Required. Specifies the name of an existing screen design, (as defined
in a previously executed SCREEN statement).

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

row1,col1

Description Optional. Specifies the dynamic offset (row and column positions) of a
screen within the logical display.

Format Two arithmetic expressions that evaluate from 1 to 255

Default (1,1)

Considerations

♦ All row/column values that you supply must be relative to row 1,
column 1. Enter row 2, column 3 as (2,3).

♦ MANTIS uses only the integer portions of row1 and col1.

♦ MANTIS accepts row and column values only if the domain of the
screen does not extend beyond or across the logical display
boundaries (255 by 255).

Chapter 3 MANTIS programming language

158 P39-5002-00

 The figure below illustrates the relationship between the physical
screen, domain, and the work area:

Screen Design Work Area
255 x 255

Domain
25 x 132

Physical Screen
22 x 80

255

255

001

001

WAIT

Description Optional. Tells MANTIS to add this screen to a map set without
displaying the map set on the terminal. This screen is passive in the map
set (input fields are protected) unless the UPDATE option is used on a
subsequent member of the map set.

SET

Description Optional. Tells MANTIS to add this screen to a map set and to display
the entire set on the terminal. This is the active map in the map set.
(Active map fields appear on top, that is, overlapping fields from active
maps have precedence.)

UPDATE

Description Optional. Tells MANTIS to add this screen to a map set and to display
the map set. This map is active within the map set. Fields on passive
map(s) that are unprotected and completely displayed can also be
altered.

CONVERSE

MANTIS Language 159

WINDOW

Description Optional. Enables window mode with the window positioned at
(row2,col2). (For instructions on using window mode, refer to MANTIS
Facilities, OS/390, VSE/ESA, P39-5001.)

DISPLAY

Description Optional. Specifies that the physical display be positioned at row2, col2.
Window mode is not automatically activated.

(row2,col2)

Description Optional. Used with the WINDOW or DISPLAY options. Indicates the
row/column position for the physical display.

Format Two arithmetic expressions that evaluate from 1 to 255

Default (1,1)

Considerations

♦ All row/column values that you supply must be relative to row 1,
column 1. Enter row 2, column 3 as (2,3).

♦ MANTIS uses only the integer portions of row1 and col1.

Chapter 3 MANTIS programming language

160 P39-5002-00

RELEASE

Description Optional. Removes the specified map from the map set.

Consideration If a CONVERSE map RELEASE is issued for a specified map that is not
in the map set, MANTIS issues an error message.

General considerations
♦ When you issue CONVERSE (other than WAIT or RELEASE

options), MANTIS:

- Displays the screen design with all edited data on the terminal
and, unless FULL DISPLAY is indicated, fills the Message Line
with any unfinished SHOW statements (terminated by ;).

- Waits until you press a program-interrupt key (such as ENTER, PF
key, PA key, or CLEAR).

- Checks that the input numeric fields contain valid numeric
characters and that they correspond to the field mask characters.

- Saves any alterations you make into the corresponding program
variables.

- Saves a text value (associated with the screen name) describing
the terminal key that you pressed to cause the input (or what you
entered in the Key Simulation field).

- Saves any unsolicited data you enter in the bottom line of the
screen to feed the next OBTAIN statement encountered.

- Redisplays the same screen with an error message on the
second-to-last line if you enter any invalid numeric fields, and
highlights the faulty fields on the screen (without losing the
numeric or hidden attribute).

- Resets the SLOT and SLICE counters to zero if the CONVERSE
is to a display terminal. If the CONVERSE is to a printer, then
the SLOT and SLICE counters are not reset.

CONVERSE

MANTIS Language 161

♦ Because MANTIS reserves the last two lines on all screens (unless
you specify the FULL DISPLAY attribute through the Screen Design
facility or with an ATTRIBUTE statement), they appear to be blank.
The last line has two fields—Command Line and Key Simulation.
You can enter data on the last line by positioning the cursor:

- In the left field to enter data (see the OBTAIN statement).

- In the right field to simulate a program function key (e.g., if you
enter PF7, MANTIS assumes that you pressed the PF7 key).
You can also use the right field on the last line to terminate a
program (e.g., enter KILL) or enter window mode.

♦ On input numeric fields with decimal fractions, you need only enter
the significant decimal digits. The input numeric field cannot contain
more digits than the mask allows.

♦ A CONVERSE (causing physical terminal I/O) automatically
dequeues resources if the MANTIS user is defined as
pseudoconversational in CICS or COMMITs resources in CICS.

♦ A CONVERSE statement that contains the WAIT, SET, or UPDATE
option adds the map to the current map set unless it is the first
converse or is preceded by a CLEAR statement; for example:

CONVERSE MAP1 (Sent to terminal)
CLEAR (Initiates new map set and clears

screen)
CONVERSE MAP2 WAIT (MAP2 added to empty map set)
CONVERSE MAP3 SET (Screen containing MAP2, MAP3

sent to terminal)

♦ The current map set is cleared when a CLEAR statement (with no
screen name) is issued, or when a CONVERSE statement has
neither the WAIT, SET or UPDATE options specified, for example:

CONVERSE MAP1 (Sent to terminal)
CONVERSE MAP2 SET (MAP2 added to map set

containing MAP1 and sent to
terminal)

CONVERSE MAP3 (Map set cleared, and MAP3 is
sent to terminal)

Chapter 3 MANTIS programming language

162 P39-5002-00

♦ A map added to a map set already containing that map results in a
change of ordering within the map set. If you specify SET or
UPDATE, the map moves from passive to active.

♦ A map can appear only once within a map set. If it is added twice
(with a WAIT, SET, or UPDATE option), it is moved to the new
dynamic offset. If you want the same screen image to appear twice,
you must have two screen variables and converse both of them, for
example:

SCREEN MAP1("INDEX"),MAP2("INDEX")

CONVERSE MAP1

CONVERSE MAP2(20,30)SET

♦ Overlapping fields have precedence of order when they are
conversed. Later maps' fields have priority over earlier maps' fields.

♦ Fields that are partially displayed because they overlap the physical
screen boundary can be updated.

♦ If you create a screen on a large terminal and converse the screen
on a smaller terminal, MANTIS does not automatically put you in
window mode. The program must use the WINDOW option or the
user must enter W in the Key Simulation Field to get into window
mode, then use the PF keys to scroll around the screen.

♦ This statement can be affected by the Printer Write and Terminal
Write Exits. See your Master User for details.

♦ See also “KEY” on page 301, “KILL” on page 303, “OBTAIN” on
page 341, “SCREEN” on page 393, and “SHOW” on page 400.

CONVERSE

MANTIS Language 163

Examples

♦ The following example shows how to use the CONVERSE statement
with WAIT and SET to add one map without displaying it, and then
add a second map and display both maps:

00010 ENTRY INDEX

00020 .FILE RECORD("INDEX","SERENDIPITY")

00030 .SCREEN MAP1("INDEX")

00035 .SCREEN MAP2("DETAILS")

00040 .GET RECORD FIRST

00050 .WHILE RECORD<>"END" AND MAP<>"CANCEL"

00055 ..CONVERSE MAP2(5,10)WAIT

00060 ..CONVERSE MAP1 SET

00070 ..WHEN MAP1="PF1"

00080 ...INSERT RECORD

00090 ..WHEN MAP1="PF2"

00100 ...UPDATE RECORD

00110 ..END

00120 ..GET RECORD

00130 .END

00140 .STOP

00150 EXIT

♦ The following example shows how to use the CONVERSE statement
with WAIT, SET, UPDATE, and RELEASE. Maps can be added,
displayed, and then removed in any order. This example shows map
2 being RELEASEd before map 3.

00010 SCREEN MAP1(ALPHA),MAP2(BETA),MAP3(GAMMA)

00050 CONVERSE MAP1 WAIT

00060 CONVERSE MAP2 SET

00070 CONVERSE MAP3 UPDATE

00080 CONVERSE MAP2 RELEASE

00090 CONVERSE MAP3 UPDATE

Chapter 3 MANTIS programming language

164 P39-5002-00

COS
The COS function returns the cosine of a where a is in radians.

COS(a)

a

Description Required. Specifies the value whose cosine you want returned.

Format An arithmetic expression

Consideration If the angle is in degrees, it must be converted to radians. See “PI” on
page 367 to find out how to do this.

General consideration

 See also “ATN” on page 94, “PI” on page 367, “SIN” on page 403, and
“TAN” on page 454.

Examples The following examples show how the COS function is used to return the
cosine:

Example Results Comments
COS(0) 1
COS(PI) -1
COS(10) -.839071529

CSIOPTNS

MANTIS Language 165

CSIOPTNS
The CSIOPTNS statement specifies the values of three options used to
execute the Compose action.

If UPPERCASE=N has been specified in FSE (Full Screen Editor), you
must enter the entire CSIOPTNS statement in UPPERCASE mode for it
to be recognized by MANTIS.

]]",SEQUENCE[][:
NO

YES
=FORCE][:

NO

YES
=[COMMENTSCSIOPTNS" nm

�
�
�

�
�
�

�
�
�

�
�
�

Chapter 3 MANTIS programming language

166 P39-5002-00

COMMENTS=

Description Optional. Specifies whether the composed (executable) program that
results from the Compose action contains commented |*COMPONENT
statements (to indicate the beginning of components) and |*CEND
statements (to mark the end of components).

Default YES

Format Text literal YES or NO

Options YES Comments COMPONENT statements in executable programs.

NO Omits COMPONENT and CEND statements from executable
programs.

Considerations

♦ If the COMMENTS parameter is coded COMMENTS=YES in the
CSIOPTNS statement in the source program, the composed
(executable) program contains commented COMPONENT
statements that begin with the vertical bar (|), for example
|*COMPONENT. In addition, COMMENTS=YES also supplies the
commented |*CEND statement to mark the end of an individual
component in the executable program.

♦ If the COMMENTS parameter is coded COMMENTS=NO, the
|*COMPONENT and |*CEND statements are not included in the
composed (executable) program to identify individual components.
You can use this when these comments would interfere; for example,
in the middle of an EXEC_SQL-END construct.

For the Decompose action to work on a composed (executable)
program, the COMPONENT statements and CEND statements must
be present in the composed (executable) program.

♦ If the COMMENTS parameter is omitted or misspelled, the system
default value is used.

♦ You can override the COMMENTS parameter from the COMPOSE
Program Entry screen. This screen displays the Function Option
Component stmt?. For information about this screen and option and
the valid values, refer to MANTIS Program Design and Editing,
OS/390, VSE/ESA, P39-5013.

CSIOPTNS

MANTIS Language 167

FORCE=

Description Optional. Specifies whether the Compose action is forced to occur if a
composed (executable) program changed since the last time the
Compose action was issued on the source program.

Default NO

Format Text literal YES or NO

Options YES To force the Compose action.

NO To bypass the Compose action.

Considerations

♦ If the FORCE parameter is coded FORCE=NO in the CSIOPTNS
statement in the source program, the Compose Confirmation screen
is displayed (if you changed a composed (executable) program and
then attempt to issue the Compose action on its source version). If
the FORCE parameter is coded FORCE=YES, the Compose
Confirmation screen is not displayed and the changes you made to
the composed (executable) program is overlaid by the Compose
action.

♦ If the FORCE parameter is omitted or misspelled, the system default
value is used.

♦ You can override the FORCE parameter if you issue the Compose
action from the COMPOSE Program Entry screen. This screen
displays the Function Option Force compose? to allow you to either
accept or override the values of the FORCE parameter. For
information about this screen and option, refer to MANTIS Program
Design and Editing, OS/390, VSE/ESA, P39-5013.

♦ NO (the default) is the normal condition of FORCE=. YES could be
used when composing an entire application in Batch MANTIS.

Chapter 3 MANTIS programming language

168 P39-5002-00

SEQUENCE m,n

Description Optional. Specifies how the line numbers of the composed program are
sequenced before the program is replaced.

Default 10,10

Format m,n are 1–3 digit numbers separated by a comma (expressions are not
allowed)

Options Enter two digits (e.g., 5,5) separated by a comma. The first digit
indicates the starting line number; the second digit indicates how much
each succeeding line number is incremented.

Considerations

♦ With the exception of the FSE, the SEQUENCE parameter is the only
location where you can alter the sequence number of program lines
in a composed (executable) program.

♦ The set of numbers is optional, but if you code one, you must code
the other. If one of the digits (or the comma) is omitted, the default
value SEQUENCE 10,10 is used. If the SEQUENCE parameter is
omitted or misspelled, the system default value is used.

♦ If the SEQUENCE parameter is coded SEQUENCE 1,1 the line
numbers in the composed (executable) program appear as 1, 2, 3,
and so forth.

♦ Coding SEQUENCE 0,0 calculates an optimum sequence number for
the program lines.

♦ If the syntax of the SEQUENCE parameter is incorrect, or the
maximum line number is exceeded, you will receive an error
message.

♦ The largest line number in MANTIS is 30000, and the SEQUENCE
parameter must be set within this limit.

CSIOPTNS

MANTIS Language 169

General considerations

♦ The CSIOPTNS statement is optional. If used, it cannot be
continued from one line to the next. The CSIOPTNS statement must
be coded as a single statement on a single line in a MANTIS source
program. The recommendation shown in the previous example is to
code the CSIOPTNS statement after the ENTRY and REPLACE
statements in your program for consistency and readability.

♦ The examples in this manual show the parameters coded in the
CSIOPTNS statement in the order of COMMENTS, FORCE,
SEQUENCE. However, you can code these parameters in any order.
Each parameter is optional so you can code any or all of them.

♦ Double quotes (“”) (or another user-defined character for some
installations) are required around the parameters of the CSIOPTNS
statement as shown in the example below. The colon (:) is required
to separate the parameters, and the equal sign (=) is required
between the parameter and the value of COMMENTS and FORCE.
There must be a space between SEQUENCE and the value as
shown below.

♦ Because options are being set for a whole program at one time, you
can only use comments one at a time. You cannot toggle comments
ON and OFF throughout the program.

♦ See also “COMPONENT” on page 153, “REPLACE” on page 383, or
“SOURCE” on page 417.

Chapter 3 MANTIS programming language

170 P39-5002-00

Examples

♦ The following examples show the CSIOPTNS statement as it
appears in a source program and a composed (executable) program

Example Comments
00010 CSIOPTNS"COMMENTS=NO" Before Compose

(Source program).
00010 |*CSIOPTNS"COMMENTS=NO" Composed (executable)

program after Compose.

♦ The following example shows how the CSIOPTNS is used to set
FORCE to “YES”, COMMENTS to “NO”, and SEQUENCE to “5,5”:

00010 ENTRY CUST_INSERT

00020 REPLACE "ACCT:CUST_INSERT/DEPT1234/CUSTOMER RECORD INSERT PROGRAM"

00030 CSIOPTNS"COMMENTS=NO:FORCE=YES:SEQUENCE 5,5"

.

.

.

00520 EXIT

00530 COMPONENT"ACCT:CUS_INIT_FILE_HEADER"

00540 COMPONENT"ACCT:CUS_ERROR_PROC"

00550 COMPONENT"ACCT:CUS_TERMINATE"

CURSOR

MANTIS Language 171

CURSOR
The CURSOR function indicates whether the cursor appeared in a
specific field at the last terminal I/O. MANTIS makes the test and returns
either TRUE or FALSE, or returns the screen or field name of the entity
that contained the cursor at the last converse.

CURSOR(

, (,)
"FIELD"
"SCREEN"

)

screen - name field - name
row col

�
�
�

�
�
�

�

�

�
�

�

�
�

�

�

�
�

�

�
�

screen-name

Description Required. Specifies the name (as defined in a previously executed
SCREEN statement) of the screen you are testing.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

field-name

Description Specifies the name of the field you are testing.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

(row,col)

Restriction Your Master User determines if you have access to this option.

Description Optional. Specifies the coordinates of the field within the logical display
whose attributes you want returned.

Format Numeric expressions that evaluate between 1 and 255

Consideration The row and column positions must fall within a field in the specified map
and within valid fields or MANTIS issues an error message.

Chapter 3 MANTIS programming language

172 P39-5002-00

"FIELD"

Description Specifies that MANTIS should return the symbolic name of the field in
which the cursor appeared at the last terminal input.

Format Text expression evaluating to “FIELD”

Considerations

♦ This form of the CURSOR function returns a text string containing the
field symbolic name.

♦ If the cursor was not in any named (input) field at terminal input, a
zero-length text string is returned.

"SCREEN"

Description Specifies that MANTIS should return the symbolic name of the screen
containing the field in which the cursor appeared at the last terminal
input.

Format Text expression evaluating to “SCREEN”

Considerations

♦ This form of the CURSOR function returns a text string containing the
screen symbolic name.

♦ If the cursor was not in any named (input) field at terminal input, a
zero-length text string is returned.

CURSOR

MANTIS Language 173

General considerations

♦ MANTIS returns TRUE only if the cursor appeared within the domain
of the field you specified when ENTER, a program function key, a PA
key, the PEN key, or the CLEAR key was pressed. Otherwise,
MANTIS returns FALSE.

♦ If screen-name is defined in a caller and passed as a parameter on
an EXTERNAL DO, both screen-name and field-name must be
passed.

♦ MANTIS returns FALSE when the map is not in the current map set.

♦ MANTIS returns FALSE when a field was not displayed due to an
overlaying map on the last CONVERSE operation.

♦ MANTIS returns TRUE if the cursor was in a field at least partially
displayed in a map set.

♦ After you issue a CLEAR statement, the CURSOR function returns
FALSE until the next CONVERSE.

♦ See also “ATTRIBUTE” on page 95 and “MODIFIED” on page 332.

Examples

♦ For the table below, the cursor was on FIELD1 (at row 3, column 2),
in screen MAP1, when the user pressed ENTER.

Example Results Comments
CURSOR(MAP1,FIELD1) TRUE (1)
CURSOR(MAP1,FIELD2) FALSE (0)
CURSOR(MAP1,(3,2)) TRUE (1)
CURSOR("SCREEN") "MAP1" Text version of the

symbolic name.
CURSOR("FIELD") "FIELD1"

♦ The following example shows how to use CURSOR to determine if

the location of the cursor during the last terminal input was on a
specific field:

00010 IF CURSOR(MAP,CUST_NO)

00020 .DO CUST_NO_DRILLDOWN

00030 END

Chapter 3 MANTIS programming language

174 P39-5002-00

♦ The following example shows how to use CURSOR to select items
from a list of options by cursor positioning. This requires specifying
a symbolic map name and field name. For example, select an item
from a list of choices (menu processing) or process an element from
a list:
00100 WHEN CURSOR(MENU_SCREEN,CLIENT_UPDATE)

00110 .DO CLIENT_PROCESSING

00115 .BREAK

00120 WHEN CURSOR(MENU_SCREEN,INVENTORY_UPDATE)

00130 .DO INVENTORY_PROCESSING

00140 .BREAK

.

.

.

00200 END

CURSOR

MANTIS Language 175

♦ The following example shows how to use CURSOR to position the
cursor to a group of lines. For example, MANTIS scrolls up or down
when the cursor is the scroll amount in the Full Screen Editor:
00050 I =1

00100 WHILE I<=COUNT

00110 .IF CURSOR(CLIENT_SCREEN,NAME(I))

00120 ..FIRST_KEY=NAME(I)

00130 ..I=COUNT:|END LOOP FORCED

00140 .END

00150 .I=I+1

00160 END

00170 GET REC(FIRST_KEY)LEVEL=1

00180 I=1

00190 WHILE I<COUNT AND REC<>"END"

00200 .I=I+1

00210 .GET REC LEVEL=1

00220 END

♦ The following example shows how the “FIELD” form of the CURSOR
function can be used to issue field sensitive help:
00100 SCREEN MAP(CLIENT_SCREEN)

00110 CONVERSE MAP

00120 WHEN MAP="PF1"

00130.PROMPT CURSOR("FIELD")

00140 END

Chapter 3 MANTIS programming language

176 P39-5002-00

DATAFREE
The DATAFREE function returns the number of bytes remaining in your
data area. The data area is used to hold the values for all variables in
your program. The amount available decreases as additional variables
are defined.

DATAFREE

General consideration

See also “PROGFREE” on page 372 and “USERWORDS” on page 498.

Example The following example shows how to use the DATAFREE function:

Example Results Comments
DATAFREE 65535 For a program that has not been

RUN or BOUND yet (no variables
defined).

DATE (Function)

MANTIS Language 177

DATE (Function)
DATE is both a statement and a function. The DATE function returns a
text string containing the current date in the format of the current
specification.

DATE

General considerations

♦ The format of the date string can be an installation-defined value or a
program-defined value (see “DATE (Statement)” on page 179). The
supplied default is “YY/MM/DD”. The DATE statement and function
provide flexibility for choice of the delimiter that appears between the
elements of the DATE text string. You may choose no delimiter or
any delimiter, such as a slash, a hyphen, or a period. MANTIS will
return the text string in whatever format you choose.

♦ The DATE function may have substring parameters (see
“Substringing text variables” variables on page 53).

♦ See “DATE (Statement)” on page 179 for information on specifying
the format.

♦ See also “TIME (Function)” on page 460.

Chapter 3 MANTIS programming language

178 P39-5002-00

Example The following examples show how the DATE function returns the current
date in the format set up by the DATE statement:

Example Results Comments
DATE "01/12/31" Default format.
DATE "12-31-2001" Alternate format set up by:

DATE="MM-DD-YYYY"

DATE(1,5) "01/12" Substringing allowed; in this
case, just the YY/MM.

DATE "01-02" When DATE=“YY-MM”.
DATE "2009/12/31" When DATE=“2009/12/31”. All

digits are considered punctuation
characters. Subsequent DATE
functions return this value until
the format reset.

DATE (Statement)

MANTIS Language 179

DATE (Statement)
DATE is both a statement and a function. Use the DATE statement to
specify a text string by which the DATE function formats the current date.

DATE=mask-expression

mask-expression

Description Required. Specifies the type of string MANTIS uses to return the current
date with the DATE function.

Format A text string of 0–12 characters

Considerations

♦ If the text string specified is longer than 12 characters, the first 12
bytes are used.

♦ If NULL (“”) is specified, the installation default is used.

♦ The following strings are substituted with the data described when
used with the DATE function:

- DD or dd Day of month (01–31)

- MM or mm Month (01–12)

- YY or yy 2-digit year (00–99)

- DDD or ddd Julian day (001–366)

- YYYY or yyyy 4-digit year (0000–9999)

- Punctuation characters

Chapter 3 MANTIS programming language

180 P39-5002-00

General considerations

Your Master User may define an installation-wide default value for
the DATE format.

♦ You can specify the format of the DATE returned value in one of the
following ways:

- DATE=mask, as specified in a program by a user.

- DATE format specified by installation (see your Master User).

- Supplied default, which is “YY/MM/DD”.

♦ The format is maintained down DO/CHAIN levels.

♦ No left-hand subscripting is permitted. (DATE(1,5)=“YY/MM” (the
DATE statement) is invalid. However, you can use subscripts on the
DATE function.

♦ When MANTIS executes a CHAIN (without LEVEL), KILL, fault
(error), or STOP, the format is reset to the installation default.

♦ YYYYMMDD is used for all CONTROL users programs.

♦ Arguments for DATE are converted to uppercase upon execution of
your program.

♦ During testing, a constant DATE can be set; for example, DATE=
“2009/12/31”. It is maintained according to the rules stated above.

♦ The DATE statement and function provide flexibility for choice of the
delimiter that appears between the elements of the DATE text string.
You may choose no delimiter, a slash, a hyphen, or a period.
MANTIS will return the text string in whatever format you choose.

♦ See also “TIME (Statement)” on page 462 and “DATE (Function)” on
page 177.

Example See the examples under “DATE (Function)” on page 177.

DBCS (Statement)(Kanji users only)

MANTIS Language 181

DBCS (Statement)(Kanji users only)
The DBCS statement names and specifies dimensions for DBCS (Double
Byte Character Set) variables and arrays.

DBCS name1[([n1,] length1)]

 [,name2[([n2,] length2)] . . .]

name

Description Required. Specifies the name of the DBCS variable.

Consideration When the symbolic name is previously defined, MANTIS bypasses this
definition.

n

Description Optional. Specifies the number of elements in a DBCS array.

Format Arithmetic expression that evaluates to a value in the range 1–255

Considerations

♦ MANTIS rounds n to an integer value.

♦ If not specified, name1 is a DBCS scalar.

length

Description Optional. Specifies the maximum length (in characters) of each DBCS
element.

Format Arithmetic expression that evaluates to a value in the range 1–127

Default 8

Consideration MANTIS rounds length to an integer value.

Chapter 3 MANTIS programming language

182 P39-5002-00

General considerations

♦ A DBCS variable contains a zero-length string (K“”) upon initial
definition.

♦ MANTIS accepts only as many characters in a DBCS variable as you
specify in the DBCS statement.

♦ The following MANTIS statements allow DBCS literals and variables
to be specified as arguments:

CALL HEAD POINT
DEQUEUE SHOW
ENQUEUE LET SIZE
GET

♦ The following MANTIS statements allow DBCS variables, but not
DBCS literals, to be specified as parameters:

CHAIN ENTRY-EXIT DO OBTAIN

♦ The DBCS statement is functionally equivalent to the KANJI
statement.

♦ See also “BIG” on page 134, “KANJI (Kanji users only)” on page 298,
“MIXD” on page 327, “MIXM” on page 328, “MIXMODE” on
page 329, “MIXT” on page 331, “SMALL” on page 415, and “TEXT”
on page 457.

Example The following example shows how a DBCS statement names and
specifies dimensions for DBCS variables:

In this example, < indicates SO or Shift-out, and > indicates SI or Shift-in.

00010 DBCS FIELDK(5),ARRAYK(3,20)

00020 FIELDK=K" %% ":ARRAYK(1)=K" %%%% ":ARRAYK(2)=G "<%%%%>"

00030 SCREEN MAP("DBCS_MAP","PSW")

00040 WHILE MAP<>"CANCEL"

00050

00060

00070

.

.

DELETE

MANTIS Language 183

DELETE
The DELETE statement deletes a record from an external file, a MANTIS
file, a personal computer file, an RDM logical view, or a TOTAL DBMS
view. Before you delete a record from a file or view, you must first
identify it by processing the associated FILE, TOTAL, ACCESS, or VIEW
statement. You do not need to GET a MANTIS, TOTAL, or external file
record before deleting it. You must, however, read an RDM logical view
before deleting it.

DELETE (External file)

DELETE
(, . . .) ALL
LEVEL =
ALL

file - name
key1 key2

n
�

�

�
�

�

�

�
�

file-name

Description Required. Specifies the name (as defined in a previously executed
ACCESS statement) of an existing external file where you want to delete
a record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Chapter 3 MANTIS programming language

184 P39-5002-00

key1,key2,…

Description Optional. Specifies generic key values for file-name.

Considerations

♦ MANTIS deletes all records matching the specified key value(s).

♦ If you do not specify (key1,key2,…), MANTIS uses the current
contents of the file key variables to locate and delete a single record.

♦ The ALL keyword is required if you specify (key1,key2,…).

♦ The datatypes of the supplied generic keys (key1,key2,...) must
match the datatypes (text or numeric) of the corresponding elements
in the file definition.

♦ If you supply complete key values, MANTIS deletes that specific
record and returns a status with an FSI message of 1 DELETED
RECORD. If the underlying file is a path with a non-unique alternate
index, MANTIS will delete all synonym records that match the key
specification.

♦ If the last (or only) key supplied is TEXT or DBCS, MANTIS finds any
record whose key matches up to the current length of that TEXT or
DBCS field and deletes the found record or records. In this case, the
length of the generic key is the full length of all preceding key fields
(if any) plus the current length of the last key field. For example, if
the key field is TEXT and has a length of five, and key has the value
of “ABC”, MANTIS deletes any record with “ABC” in the first three key
positions

♦ For TEXT or DBCS keys that are not in the last position, whose
values are shorter than the corresponding file element length,
MANTIS uses blanks to pad up to the length of the corresponding file
element.

♦ If a TEXT or DBCS key is longer than the corresponding file element,
MANTIS truncates the key to the length of the corresponding file
element.

♦ MANTIS uses numeric keys in their entirety. For example, if the key
value is 1, MANTIS will match only keys with 1 and not keys with 10–
19, 100–199, etc.

DELETE

MANTIS Language 185

ALL

Description Optional. Tells MANTIS to delete all records in the file that match the key
specification (key1,key2,…).

Considerations

♦ Specifying the following will delete all of the records in a file:
DELETE file-name ALL

♦ Specifying the following will delete all of a file's records that start with
the specified generic key value:
DELETE file-name (key1, key2...) ALL

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to delete.

Default 1

Format Arithmetic expression that evaluates to a value in the range of 1 through
m, where m is the maximum buffer number, as defined in the
corresponding ACCESS statement

Considerations

♦ MANTIS uses only the integer portion of n.

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ Do not use the LEVEL option when issuing a generic DELETE.

Chapter 3 MANTIS programming language

186 P39-5002-00

General considerations

♦ The following examples show how these rules generate keys for a file
with two five-character TEXT key fields:

Example Key value used Comments
DELETE FNAME Current contents

of the two key
field variables

Specific key.

DELETE FNAME ALL "" Deletes all records in
the file.

DELETE FNAME
("12345","ABC") ALL

"12345ABC" Generic key, length=8.

DELETE FNAME
("12345","ABCDE") ALL

"12345ABCDE" Full key (at most one
record deleted).

DELETE FNAME
("123","ABC") ALL

"123 ABC" key1 blank padded.
Generic key, length=8.

DELETE FNAME
("1234567","ABC") ALL

"12345ABC" key1 truncated.
Generic key, length=8.

DELETE FNAME
("12345") ALL

"12345" Generic key, length=5.

DELETE FNAME ("123")
ALL

"123" Generic key, length=3.

DELETE

MANTIS Language 187

♦ MANTIS returns a text string in the variable called access-name that
reflects the status of the operation:

Returned text string Description
"" The delete is successful.
"LOCK" * The password specified in the ACCESS

statement for this file view is not valid for
deletions or insertions.

"ERROR" * MANTIS received an error status. Use the
FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during record

deletion.
♦ RRN for NUMBERED files specified a

record number that does not exist.
♦ The External file exit canceled the

operation.
"NOTOPEN" * The external file is not open.

* Returned only when TRAP is in effect for the file.

♦ If key(s) are not supplied on the delete statement for NUMBERED
files, the Relative Record Number (RRN) contained in the
corresponding reference variable identifies the record to be deleted.

♦ You cannot do a generic delete for NUMBERED files, but you can
delete ALL, or delete a single record, the Relative Record Number
(RRN) contained in the corresponding reference variable identifies
the record to be deleted.

♦ If key(s) are not supplied on the DELETE statement for INDEXED
files, the contents of key data elements identify the record to be
deleted.

♦ If you do not specify keys, MANTIS deletes the record that has keys
equal to the current contents of the key variable(s) for this file. It
uses the level, if supplied, to determine the key subscript.

Chapter 3 MANTIS programming language

188 P39-5002-00

♦ If TRAP is not in effect, and you are unable to perform the delete
because of a failure status from a MANTIS external file, MANTIS
automatically issues a RESET. If trap is in effect, and the program
does not issue a RESET when “ERROR” is returned, then it is
possible that MANTIS did only part of the deletion.

♦ An external file open is issued (when required) on the first DELETE,
GET, INSERT, or UPDATE.

♦ If a generic DELETE fails after partial completion, all updates are
backed out if a fault message is issued, but, if TRAP is on, the actual
number of deleted records is returned as part of the FSI message.

♦ DELETE with ALL option deletes all records in an external KSDS
indexed file that matches the key qualification. The generic DELETE
is not available on RRDS files, but DELETE ALL is available.

♦ Delete is not allowed for certain file types, for example, VSAM ESDS.

♦ For extended external file status messages and Function Status
Indicators (FSIs), see “Extended status messages for MANTIS and
external files” on page 521.

♦ The External File Exit can affect this statement. See your Master
User for details.

♦ See also “FSI” on page 232, “GET” on page 234, “INSERT” on
page 277, and “UPDATE” on page 479.

Example The following example shows an External File DELETE. Notice that a
GET statement, which retrieves the designated record, precedes the
DELETE statement:
00020 .ACCESS RECORD("INDEX","SERENDIPITY",16)

00030 .SCREEN MAP("INDEX")

00040 .CONVERSE MAP

00050 .COUNTER=1

00060 .WHILE MAP<>"CANCEL" AND COUNTER<17

00070 ..WHEN INDICATOR(COUNTER)="G"

00080 ...GET RECORD LEVEL=COUNTER

00090 ..WHEN INDICATOR(COUNTER)="D"

00100 ...DELETE RECORD LEVEL=COUNTER

.

.

.

DELETE

MANTIS Language 189

DELETE (MANTIS file)

DELETE
(, . . .) ALL
LEVEL =
ALL

file - name
key1 key2

n
�

�

�
�

�

�

�
�

file-name

Description Required. Specifies the name (as defined in a previously executed FILE
statement) of a file where you want to delete a record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

key1,key2,…

Description Optional. Specifies the generic key value(s) and deletes all records
beginning with the specified key value(s).

Considerations
♦ If the last (or only) key supplied is TEXT or DBCS, MANTIS deletes

any record matching the key up to the current length of the TEXT or
DBCS field. For example, if the key is TEXT, has a length of 5, and
has a value of “ABC”, 3 is used in the key length calculation.

♦ Datatypes of the supplied generic keys (key1,key2,...) must match
the text or numeric datatypes of the corresponding elements in the
file definition.

♦ Specify ALL with this option to delete all records that match a generic
key.

♦ For supplied keys that are TEXT, are not in the last position, and are
shorter than the corresponding file element length, MANTIS blank-
pads the field to the defined length.

♦ If a TEXT key is longer than the corresponding file element length,
the text key is truncated.

♦ Substringing is not allowed for numeric generic key values. Numeric
keys are used in full.

Chapter 3 MANTIS programming language

190 P39-5002-00

ALL

Description Optional. Tells MANTIS to delete all records in the file, or all records
matching the specified key(s).

Considerations

♦ Specifying the following will delete all of the records in a file:
DELETE file-name ALL

♦ Specifying the following will delete all of a file's records that start with
the specified generic key value:
DELETE file-name (key1, key2...) ALL

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to delete.

Default 1

Format Arithmetic expression that evaluates to a value in the range of 1 through
m, where m is the maximum buffer number, as defined in the
corresponding FILE statement

Considerations

♦ MANTIS uses only the integer portion of n.

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ Do not use the LEVEL option when issuing a generic DELETE.

DELETE

MANTIS Language 191

 General considerations

♦ The following examples show how these rules generate keys for a file
that has two five-character TEXT key fields:

Example Key value used Comments
DELETE FNAME Current contents of the two

key field variables.
Specific key.

DELETE FNAME ALL "" Deletes all records in the file.
DELETE FNAME
("12345","ABC") ALL

"12345ABC" Generic key, length=8.

DELETE FNAME
("12345","ABCDE") ALL

"12345ABCDE" Full key (at most one record
deleted).

DELETE FNAME
("123","ABC") ALL

"123 ABC" key1 blank-padded. Generic
key, length=8.

DELETE FNAME
("1234567","ABC") ALL

"12345ABC" key1 truncated. Generic key,
length=8.

DELETE FNAME
("12345") ALL

"12345" Generic key, length=5.

DELETE FNAME ("123")
ALL

"123" Generic key, length=3.

Chapter 3 MANTIS programming language

192 P39-5002-00

♦ MANTIS returns a text string in the variable called file-name that
reflects the status of the operation:

Returned text string Description
"" The delete is successful.
"LOCK" * The password specified in the FILE

statement is not valid.
"ERROR" * MANTIS received an error status. Use the

FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during record

deletion.
♦ The SETPRAY Exit canceled the

operation.
"NOTFOUND" A record with the requested key does not

exist.

* Returned only when TRAP is in effect for the file.

♦ If TRAP is not in effect and you are unable to perform the delete
because of a failure status, MANTIS automatically issues a RESET.
If TRAP is in effect and the program does not issue a RESET when
“ERROR” is returned, then it is possible that MANTIS did only part of
the deletion.

♦ If you do not specify keys, MANTIS deletes the record that has keys
equal to the current contents of the key variable(s) for this file. It
uses the level, if supplied, to determine the key subscript.

♦ If a numeric (BIG or SMALL) key is supplied, it must match exactly in
the corresponding positions of the record.

♦ The number of records deleted for DELETE with the ALL option is
returned in the FSI.

♦ If a full key value is supplied as a generic key value, MANTIS returns
a GOOD status with an FSI message of 1 DELETED RECORD(S).

♦ The Setpray Exit can affect this statement. See your Master User for
details.

DELETE

MANTIS Language 193

♦ For extended MANTIS file status messages and Function Status
Indicators (FSI), see “Extended status messages for MANTIS and
external files” on page 521.

♦ See also “FSI” on page 232, “GET” on page 234, “INSERT” on
page 277, and “UPDATE” on page 479.

Example The following example shows how a MANTIS File DELETE can be done
in conjunction with a function key:
00010 ENTRY INDEX

00020 .FILE RECORD("INDEX","SERENDIPITY")

00030 .SCREEN MAP("INDEX")

00040 .GET RECORD

00050 .WHILE RECORD<>"END" AND MAP<>"CANCEL"

00060 ..CONVERSE MAP

00070 ..WHEN MAP="PF1"

00080 ...INSERT RECORD

00090 ..WHEN MAP="PF2"

00100 ...DELETE RECORD

00110 ..WHEN MAP="PF3"

00120 ...UPDATE RECORD

00130 ..END

00140 ..GET RECORD

00150 .END

00170 EXIT

Chapter 3 MANTIS programming language

194 P39-5002-00

DELETE (Personal computer file)

DELETE file-name[LEVEL=n]

file-name

Description Required. Specifies the name (as defined in a previously executed
ACCESS statement) of a personal computer file where you want to delete
a record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to delete.

Default 1

Format Arithmetic expression that evaluates to a value in the range of 1 through
m, where m is the maximum buffer number, as defined in the
corresponding ACCESS statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

DELETE

MANTIS Language 195

General considerations

♦ You cannot delete records from SEQUENTIAL files.

♦ MANTIS returns a text string in the variable called file-name that
reflects the status of the operation:

Returned text string Description
"" The delete is successful.
"LOCK" * The password specified in the ACCESS

statement for this file view is not valid for
deletions or insertions.

"ERROR" * MANTIS received an error status. Use the
FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during record

deletion.
♦ RRN for NUMBERED files specified a

record number that does not exist.

* Returned only when TRAP is in effect for the file.

♦ For NUMBERED files, the Relative Record Number (RRN) contained
in the corresponding reference variable identifies the record to be
deleted.

♦ File views residing on personal computer files can be accessed only
by that computer user.

♦ For extended personal computer file status messages and Function
Status Indicators (FSIs), see “Extended status messages for
MANTIS and external files” on page 521.

♦ See also “FSI” on page 232, “GET” on page 234, “INSERT” on
page 277, and “UPDATE” on page 479.

Chapter 3 MANTIS programming language

196 P39-5002-00

Example The following example shows how a Personal Computer File DELETE is
coded with an ACCESS statement preceding the corresponding
DELETE:
00020 .ACCESS RECORD("INDEX","SERENDIPITY",16)

00030 .SCREEN MAP("INDEX")

00040 .CONVERSE MAP

00050 .COUNTER=1

00060 .WHILE MAP<>"CANCEL" AND COUNTER<17

00070 ..WHEN INDICATOR(COUNTER)="G"

00080 ...GET RECORD LEVEL=COUNTER

00090 ..WHEN INDICATOR(COUNTER)="D"

00100 ...DELETE RECORD LEVEL=COUNTER

.

.

.

DELETE

MANTIS Language 197

DELETE (RDM logical view)

DELETE view-name [ALL][LEVEL=n]

view-name

Description Required. Specifies the name (as defined in a previously executed VIEW
statement) of the logical view where you want to delete a logical record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

ALL

Description Optional. Deletes all logical view records that are retrieved by
automatically generated GET...NEXT statements.

Format Must be coded exactly as shown

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to delete.

Default 1

Format Arithmetic expression that evaluates to a value in the range of 1 through
m, where m is the maximum buffer number, as defined in the
corresponding VIEW statement

Considerations

♦ Only specify LEVEL=n when the view-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

Chapter 3 MANTIS programming language

198 P39-5002-00

General considerations

♦ For RDM logical views, you must execute a corresponding VIEW
statement and retrieve the logical record by using the
GET...ENQUEUE statement before you can use the DELETE
statement.

♦ Because logical views cannot be uniquely keyed, establish your
current record position in a logical view (by reading the record) before
you execute a DELETE.

♦ The RDM logical view DELETE view-name ALL statement deletes all
records that were retrieved by a prior GET...NEXT statement.

♦ MANTIS returns a text string in the variable called view-name that
reflects the status of the operation:

Returned text string Description
"" Delete was successful.
"LOCK" * You do not have permission to delete

logical records from the logical view.
"NOTFOUND" * The variable-entry chain set with the

requested key does not exist.
"ERROR" * MANTIS received an error status. Use the

FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ An RDM error occurred during database

access.
♦ You tried to perform an invalid function

on the user view.

* Returned only when TRAP is in effect for the file.

DELETE

MANTIS Language 199

♦ If TRAP is not in effect and you are unable to perform the delete
because of a failure status from RDM logical view, MANTIS
automatically issues a RESET. If TRAP is in effect and the program
does not issue a RESET when “ERROR” is returned, then it is
possible that MANTIS does only part of the deletion.

♦ RDM logical view DELETE sends three status functions to the
application program that indicate processing results—FSI, ASI, and
VSI. FSI indicates the success or failure of your command. ASI
indicates the status of each field in the logical record. VSI indicates
the highest field status within the logical record. For a complete
discussion of these status functions, see this chapter and “Status
functions” on page 517.

♦ Your DBA can disallow deletes. If so, MANTIS returns the “LOCK”
status if TRAP is in effect. If TRAP is not in effect, MANTIS displays
a message and halts execution.

♦ MANTIS automatically issues a COMMIT prior to any terminal I/O if
you have issued a DELETE since the last terminal I/O.

♦ For extended RDM view status messages and Function Status
Indicators (FSIs), see “Status functions” on page 517.

♦ See also “ASI” on page 93, “FSI” on page 232, “GET” on page 234,
“INSERT” on page 277, “UPDATE” on page 479, and “VSI” on
page 505.

Example The following example shows how an RDM Logical View DELETE is
coded. Notice that a corresponding VIEW statement is executed, and
the view is read before the DELETE statement.
00010 VIEW CUSTOMER("CUST")

00020 SHOW "ENTER CUSTOMER NUMBER:"

00030 OBTAIN CUST_NO

00040 GET CUSTOMER(CUST_NO)

00050 IF CUSTOMER="FOUND"

00060 .DELETE CUSTOMER

00070 .SHOW "CUSTOMER DELETED"

00080 ELSE

00090 .SHOW "CUSTOMER NOT FOUND"

00100 END

Chapter 3 MANTIS programming language

200 P39-5002-00

DELETE (TOTAL file view)

DELETE file-name[LEVEL=n]

file-name

Description Required. Specifies the name (as defined in a previously executed
TOTAL statement) of an existing TOTAL file view where you want to
delete a record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to delete.

Default 1

Format Arithmetic expression that evaluates to a value in the range of 1 through
m, where m is the maximum buffer number, as defined in the
corresponding TOTAL statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

DELETE

MANTIS Language 201

General considerations

♦ You must execute a corresponding TOTAL statement before the
DELETE statement.

♦ A TOTAL file open is issued on the first DELETE, GET, INSERT, or
UPDATE.

♦ You do not need to read a TOTAL file record before deleting it.
MANTIS deletes the record that has keys equal to the current
contents of the key variable(s) for this file. MANTIS uses the LEVEL,
if supplied, to determine the key subscript.

♦ MANTIS obtains exclusive control of a record before requesting that
TOTAL delete it. Therefore, you don’t need to obtain the record
using the ENQUEUE parameter on the GET statement (see “GET”
on page 234).

♦ MANTIS returns a text string in the variable called file-name reflecting
the status of the operation:

Returned text string Description
"" The delete was successful.
"SETS" * You tried to delete a master record while

there were associated variable-entry
chains.

"NOTFOUND" * The variable-entry chain set with the
requested key does not exist.

"LOCK" * The password specified in the TOTAL
statement is not valid for deletion.

"NOTOPEN" * The TOTAL view is not open.
"NOTAVAL" * The TOTAL file or view is not open.

* Returned only when TRAP is in effect for the file.

♦ If TRAP is not in effect and you are unable to perform the delete
because of a failure status from RDM logical view, MANTIS
automatically issues a RESET. If TRAP is in effect and the program
does not issue a RESET when “ERROR” is returned, then it is
possible that MANTIS does only part of the deletion.

♦ See also “GET” on page 234, “INSERT” on page 277, and “UPDATE”
on page 479.

Chapter 3 MANTIS programming language

202 P39-5002-00

Example The following example shows how a TOTAL DELETE works. Notice a
TOTAL statement is executed before the record is deleted.
00010 SCREEN MAP("DELETE_HISTORY")

00020 TOTAL CUSTOMERS("CLIENT","SALES")

00030 TOTAL HISTORY("PAYMENTS","TEXAS",11)

00040 TEXT CUSTOMER_ID(20)

00050 SMALL BUFFER

00060 CUSTOMER_ID="OUR-BEST"

00070 GET CUSTOMERS(CUSTOMER_ID)

00080 BUFFER=1

00090 GET HISTORY SET(CUSTOMER_ID) FIRST LEVEL=BUFFER

00100 WHILE HISTORY<>"END" AND BUFFER<11

00110 .IF PAY_DATE<"970821"

00120 ..DELETE HISTORY LEVEL=BUFFER

00130 .ELSE

00140 ..BUFFER=BUFFER+1

00150 .END

00160 .GET HISTORY SET(CUSTOMER_ID) LEVEL=BUFFER

00170 END

00180 CONVERSE MAP

DEQUEUE

MANTIS Language 203

DEQUEUE
The DEQUEUE statement releases control of a resource, or, for VSAM
External file users, releases a previously reserved External file record, or
for TOTAL users, releases a previously reserved TOTAL database
record. MANTIS also releases any program or TOTAL record that is
waiting while other tasks use a resource.

DEQUEUE resource
file - name

�
�
�

�
�
�

resource

Description Required. Specifies the resource (text or DBCS expression) held by a
previously executed ENQUEUE statement.

Format Text or DBCS expression for a resource

file-name

Description Required. Specifies the name (as defined in a previously executed
ACCESS or TOTAL statement) of a TOTAL view or External file view you
want to release.

Format A MANTIS symbolic name (see “Symbolic names” on page 24) for a
TOTAL or External file view

Chapter 3 MANTIS programming language

204 P39-5002-00

General considerations

♦ Before executing the DEQUEUE statement, you must issue either an
ENQUEUE statement against the same resource or a GET
statement with ENQUEUE parameters for a TOTAL or external file
view.

♦ If the resource is a TOTAL or external file view, MANTIS releases all
records enqueued by the GET statement from the exclusive control
of the current task.

♦ This statement is required only in very special circumstances for
TOTAL view processing. Consult your Master User before you use
DEQUEUE for TOTAL view processing.

♦ Use this statement when an external VSAM GET statement with
ENQUEUE parameter has previously been issued and no update is
done to the record.

♦ With DEQUEUE, there is a limited scope of applicability when
running in different environments such as CICS and BATCH. When
you are running in both, DEQUEUE will apply in one mode and not in
the other.

♦ Batch MANTIS does not support DEQUEUE (it is ignored).

♦ MANTIS for IMS does not support the ENQUEUE, DEQUEUE, and
COMMIT statements. To maintain compatibility with other MANTIS
versions, these statements may remain in existing programs.
MANTIS for IMS will ignore the statements.

♦ See also “ENQUEUE” on page 211 and the ENQUEUE parameter
under the “GET” statements on page 234.

DEQUEUE

MANTIS Language 205

Examples

♦ The following example shows how MANTIS uses a DEQUEUE
statement to release the resources of a file called “CUSTOMERS”.
Notice that the record is ENQUEUEd before the DEQUEUE
statement.

00020 FILE REC("CUSTOMERS","ALIBABA")

.

.

.

00100 ENQUEUE "CUSTOMERS"+RECORD_KEY

00110 GET REC(RECORD_KEY)

.

.

.

00200 UPDATE REC

00210 DEQUEUE "CUSTOMERS"+RECORD_KEY

♦ The following example shows how MANTIS uses a DEQUEUE
statement to release the file record from a file called “CUSTOMERS”.
Notice that the record is ENQUEUEd with a GET before the
DEQUEUE statement.

00020 ACCESS REC ("CUSTOMERS","ALIBABA")

.

.

.

00100 GET REC (RECORD_KEY) ENQUEUE (Logic determines no
. update is neccesary)
.

.

00200 DEQUEUE REC

Chapter 3 MANTIS programming language

206 P39-5002-00

DO
The DO statement transfers program execution to an internal or external
subroutine. An internal subroutine is a block of statements within the
existing MANTIS program, marked by an ENTRY-EXIT. A PROGRAM
statement identifies an external subroutine. An internal subroutine
performs a function required at one or more points within a program. An
external subroutine performs a function required by one or more
programs. After executing the subroutine and upon encountering an EXIT
statement, execution returns to the next program line following the DO
statement. (“External DO” on page 527 contains a detailed discussion of
the External Do function.)

DO entry-name[(argument1,argument2,...)]

entry-name

Description Required. Specifies the name of a subroutine as indicated in the ENTRY
or PROGRAM statement.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Considerations

♦ entry-name must match a name defined in an ENTRY or PROGRAM
statement.

♦ The argument(s) must be a previously defined, unsubscripted
variable name (constants, literals and expressions are not allowed).
This means that you can only pass an entire array with external DO,
but not specific elements in an array (because you must subscript a
variable to identify its position in an array).

♦ The argument(s) in the DO and ENTRY-EXIT statements must
correspond in type and number.

♦ Because all variables previously defined by the calling routine are
available to an internal subroutine, MANTIS uses arguments only to
set up alias names.

♦ Any argument passed and then modified in a subroutine retains the
modified value when execution returns following the DO.

DO

MANTIS Language 207

argumentn

Description Optional. Specifies the argument(s) you want passed to the subroutine.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

General considerations

♦ You must include an ENTRY-EXIT statement around a subroutine.

♦ The first line of an externally done program must be an ENTRY
statement.

♦ The DO statement must appear on a line by itself. MANTIS ignores
any additional statements coded on the end of a DO statement (and
separated with a colon).

♦ Only variables passed as arguments to an external subroutine
(identified by a PROGRAM statement) are available to the external
routine. If the variable is a SCREEN, FILE, VIEW, TOTAL, or
ACCESS INTERFACE variable, subvariables are not available unless
explicitly passed.

♦ In programming mode, if you stop during execution of an external
subroutine, enter SHOW DOLEVEL to see where you are. Use the
EXIT command to return to your calling routine.

♦ If you have a choice between conversing (or using any statement that
issues a COMMIT) in high or low level External DOs, avoid low level
DOs because the rollouts and rollins required may adversely affect
performance.

♦ Avoid extensive modularizing in lower level External DOs because
this can adversely affect performance.

♦ The SLICE and SLOT statements are ignored in an externally done
program.

♦ The Program Load Exit can affect this statement. See your Master
User for details.

♦ See also “CHAIN” on page 139, “DOLEVEL” on page 209, “ENTRY-
EXIT” on page 213, “EXIT” on page 219, and “PROGRAM” on
page 373.

Chapter 3 MANTIS programming language

208 P39-5002-00

Example The following example shows how the DO statement accesses a
subroutine:
00100 ENTRY EDIT_PROGRAM

.

.

.

00150 .TYPE ="CREDIT CHECK"

00160 .PROGRAM EDIT_RTN("VALIDATION","COMMON")

00170 .DO EDIT_RTN(TYPE,CUST_NO,STATUS,MESSAGE)

00180 .IF STATUS<>"GOOD"

00190 ..PROGRAM ERROR_RTN("CHECK FIELDS","COMMON")

00200 ..DO ERROR_RTN(CUST_NO)

00210 .END

00220 .DO EDIT_RTN(TYPE,CUST_NO,STATUS,MESSAGE)

00230 .IF STATUS<>"GOOD"

00240 ..DO ERROR_RTN(SALES_REP)

00250 .ELSE

00260 ..SALES_REP=MESSAGE

00270 .END

00280 .STOP

00290 EXIT

00300 ENTRY ERROR_RTN(FIELD)

00310 .IF NOTE=""

00320 ..NOTE=MESSAGE

00330 ..ATTRIBUTE(MAP,FIELD)="BRI,CUR"

00340 .ELSE

00350 ..ATTRIBUTE(MAP,FIELD)="BRI"

00360 .END

00370 EXIT

DOLEVEL

MANTIS Language 209

DOLEVEL
The DOLEVEL function returns the current execution level in an external
subroutine.

DOLEVEL

General considerations

♦ Use the SHOW DOLEVEL command when you are debugging to see
which level you are executing. You can modify and replace programs
at any level. The revised version is executed in the next RUN.

♦ You can use DOLEVEL to direct execution of a program; for
example, EXIT or CHAIN to another program. You can also use
DOLEVEL during debugging to help identify your program level.

♦ See also “DO” on page 206, “ENTRY-EXIT” on page 213, “EXIT” on
page 219, and “PROGRAM” on page 373.

Example

Example Results Comments
DOLEVEL 0 Top-level program
DOLEVEL 1 First called program

Chapter 3 MANTIS programming language

210 P39-5002-00

E
The E function returns the value of natural e (2.71828182845905).

E

General considerations

♦ Do not use E as a variable name (see “Symbolic names” on
page 24).

♦ See also “EXP” on page 220 and “LOG” on page 320.

Example

Example Results Comments
E 2.71828183 Constant value

ENQUEUE

MANTIS Language 211

ENQUEUE
The ENQUEUE statement holds control of a resource as identified by the
resource-string. Any subsequent ENQUEUE on that resource by another
program causes that program to remain in a wait state until the resource
is released (see the DEQUEUE statement).

ENQUEUE text-expression

text-expression

Description Required. Specifies the resource-string you want to hold.

Format Text or DBCS expression

General considerations

♦ An ENQUEUE takes a text-expression and ensures that no one else
is ENQUEUEd on the same text-expression. If there is someone
else already ENQUEUEd upon that text-expression the latter
MANTIS program waits until the original ENQUEUE is released by
DEQUEUE, COMMIT, or screen output. ENQUEUE only works if all
programs wishing to serialize on a resource use the correct
enqueuing protocol.

♦ Do not specify the symbolic file-name as the resource for the
ENQUEUE. The ENQUEUE function will not work as intended if
coded as:

100 ENQUEUE REC

 because REC will evaluate to the file status; for example, “NEXT”.

♦ A terminal I/O with COMMIT ON releases all ENQUEUEs (see
“VSAM deadlocks” on page 550 and COMMIT ON/OFF).

♦ It is possible to deadlock tasks, if Task A holds an ENQUEUE that
Task B is waiting to ENQUEUE and Task A is waiting on an
ENQUEUE that Task B holds. (It is also possible for more than two
tasks to have an n-way deadlock.) Therefore, it is important that you
establish an ordering convention (for example, alphabetical order) so
that all ENQUEUEs are issued in the same order.

♦ Records that are updated can be held by the host DBMS or file
management system until a logical unit of work (LUW) is completed.

Chapter 3 MANTIS programming language

212 P39-5002-00

♦ Excessive ENQUEUEing can exhaust the TP monitor’s allocated
space for ENQUEUE registration.

♦ With ENQUEUE, there is a limited scope of applicability when
running in different environments such as CICS and BATCH. When
you are running in both, ENQUEUE will apply in CICS and is ignored
in BATCH.

♦ Batch MANTIS and MANTIS for IMS do not support the ENQUEUE,
DEQUEUE, and COMMIT statements. To maintain compatibility with
other MANTIS versions, these statements may remain in existing
programs. MANTIS will ignore the statements.

♦ See also “COMMIT” on page 149, “DEQUEUE” on page 203, and the
ENQUEUE parameter under the “GET” statement (the “GET”
statement starts on page 234).

Example The following example shows how the ENQUEUE statement is used for
record management and data integrity:
00020 FILE REC("CUSTOMERS","ALIBABA")

.

.

.

00100 ENQUEUE "CUSTOMERS"+RECORD_KEY

00110 GET REC(RECORD_KEY)

.

.

.

00200 UPDATE REC

00210 DEQUEUE "CUSTOMERS"+RECORD_KEY

ENTRY-EXIT

MANTIS Language 213

ENTRY-EXIT
The ENTRY-EXIT statement defines the boundary of a subroutine or top-
level routine of a program. When a DO or CHAIN statement invokes a
subroutine or program bounded by an ENTRY-EXIT, the arguments (and
all references to them) passed by the DO or CHAIN statement replace
the subroutine’s parameters. EXIT is also a command in the editor.

ENTRY entry-name [(parameter1,parameter2,...)]
 .
 . statements
 .
EXIT

entry-name

Description Required. Specifies the name of the subroutine or program.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Considerations

♦ Must appear on same program line as ENTRY statement.

♦ Must be a unique symbolic name within the program. The entry name
is defined at the time the program is saved or replaced; that is,
before any statements are executed. For example:
00010 BIG X

…

01000 ENTRY X

…

02000 EXIT

X will be defined as the entry name. Statement 10 will be ignored
because X is an already-defined symbolic name.

Chapter 3 MANTIS programming language

214 P39-5002-00

parameter

Description Optional. Specifies those parameters you want passed to the subroutine
or program.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Considerations

♦ A limit of 255 parameters per ENTRY exists.
♦ Until the EXIT statement is executed, parameters are aliases for the

corresponding symbolic names passed on the DO statement. If the
symbolic name specified by parameter is already defined and has a
data area, that definition is temporarily suspended. See “Automatic
mapping” on page 541.

♦ The way that you specify parameters in complex statements such as
ACCESS, FILE, INTERFACE, TOTAL, or VIEW could cause a loss
of automapping. This loss occurs if a complex statement in an
internal subroutine references a field that is defined by a different
name outside of the parameter list in the internal DO. To avoid this
loss of automapping do one of the following:
- Define the parameter with the same variable name in and out of

the internal subroutine.

- Do not pass the variable to a subroutine that uses complex
statements.

- Execute the complex statement outside the subroutine.

- An example of this would be:
SCREEN MAP("MAP1"):| DEFINES NAME, FIELD1, FIELD2

CONVERSE MAP

DO SUB1(FIELD1)

GET REC

ENTRY SUB1(NAME)

FILE REC(NAME,PASSWORD):| DEFINES FIELD3, NAME

EXIT

Within SUB1, NAME and FIELD1 will be synonymous. So the
both the FIELD1 and NAME field from the file, REC, will map to
FIELD1 on I/o operations outside of SUB1. The GET REC
statement in the program mainline will not properly retrieve the
data for the variable NAME.

ENTRY-EXIT

MANTIS Language 215

EXIT

Description Required. Returns control from a subroutine to the invoking program, or
from a program to programming mode (if initiated from programming
mode).

General considerations

♦ When you pass data from one program to another, put an ENTRY-
EXIT statement around the top-level of routine of each program.

♦ Arithmetic, text, or DBCS variables, lists or arrays must correspond in
number between the ENTRY-EXIT and the DO and CHAIN
statements, except when zero arguments are passed as a CHAIN.
Arguments are optional on the CHAIN, even when parameters are
specified on the target program’s ENTRY statement. If arguments
are not supplied, the parameter variables are undefined at entry. If
arguments are supplied on a CHAIN or DO, the parameter variables
assume the type characteristics from the passed arguments.

♦ If a program has arguments passed to it, or if it is externally done, it
must have an ENTRY statement in it. That ENTRY statement must
be the first line of the program.

♦ If the program is not externally done or does not have arguments
passed to it, it does not need an entry-exit around the top-level
routine. In this case, you must code a STOP statement prior to the
first internal subroutine ENTRY statement.

♦ See also “CHAIN” on page 139, “DO” on page 206, and “STOP” on
page 452.

♦ The ENTRY and EXIT statements must each appear on a line by
themselves. Only a comment (separated by a colon) can follow the
EXIT. For example:
ENTRY ROOTS(A,B,C,R1,R2)

…

EXIT:|Return with value in R1 & R2

Chapter 3 MANTIS programming language

216 P39-5002-00

Example The following example shows how ENTRY-EXIT statements work in pairs
to frame subroutines:
00010 ENTRY DATA_ENTRY

00020 .SCREEN MAP("INDEX")

00030 .FILE REC("INDEX","SERENDIPITY")

00040 .CONVERSE MAP

00050 .WHILE MAP<>"CANCEL"

00060 ..DO INSERT_RECORD

00070 ..CLEAR MAP

00080 ..CONVERSE MAP

00090 .END

00100 .STOP

00110 EXIT

00120 ENTRY INSERT_RECORD

00130 .INSERT REC

00140 EXIT

EXEC_SQL-END

MANTIS Language 217

EXEC_SQL-END
The EXEC_SQL-END statement defines the boundary of an SQL
statement embedded in a MANTIS program. This allows SQL statements
to be executed in a MANTIS program.

EXEC_SQL [(nn)]

General considerations

♦ MANTIS SQL Support must be installed on your system to execute
SQL statements from a MANTIS program. If MANTIS SQL Support
is not available on your system, SQL statements can be included and
displayed in a MANTIS program, but they cannot be executed.

♦ Only SQL statement text can be placed between the EXEC_SQL and
END. MANTIS program statements or comments cannot be included
within the SQL statement text.

♦ Each line of SQL text must begin with the MANTIS comment
character, |.

♦ SQL statement text can be included on the same line with the
EXEC_SQL statement. For example:
00010 EXEC_SQL:|SELECT T

00020 END

♦ When SUPRA SQL is being used as the SQL database, a numeric
session number is permitted following the EXEC_SQL statement.
For example, this statement will access the second SUPRA session
when the SQL statement is called:
00010 EXEC_SQL(2)

 This session number is not permitted when DB2 is the SQL
database.

♦ See also “SQLCA (Function)” on page 420, “SQLCA (Statement)” on
page 424, “SQLDA (Function)” on page 426, “SQLDA (Statement)”
on page 432.

♦ For further information, refer to MANTIS DB2 Programming, OS/390,
VSE/ESA, P39-5028, or MANTIS SUPRA SQL Programming,
OS/390, VSE/ESA, P39-3105.

Chapter 3 MANTIS programming language

218 P39-5002-00

Example The following example shows how the EXEC_SQL statement allows SQL
functions to be inserted into a MANTIS program. The END statement
signals the end of the SQL segment of code.
00110 BIG EMPL_NUM

00120 TEXT EMPL_NAME(30)

00130 EXEC_SQL

00140 .| SELECT EMPNO, EMPNAME

00150 .| INTO: :EMPL_NUM,:EMPL_NAME

00160 .| FROM TEMPL_TABLE

00170 .| WHERE EMPNO = :EMPL_NUM

00180 END

EXIT (Command)

MANTIS Language 219

EXIT (Command)
The EXIT command/statement returns control from an external routine to
the invoking program.

EXIT

General considerations

♦ In programming mode, EXIT (as a command) returns you to
programming mode for the calling program.

♦ In a running program, the EXIT statement both bounds the
subroutine started by the ENTRY statement and, when executed,
returns to the line following the DO that invoked the subroutine.

♦ You cannot exit from the highest-level routine (that is, DOLEVEL 0) in
programming mode.

♦ In a running program, the highest-level EXIT is equivalent to a STOP.

♦ See also “DO” on page 206, “DOLEVEL” on page 209, “ENTRY-
EXIT” on page 213, and “STOP” on page 452.

Example
00120 ENTRY INSERT_RECORD

00130 .INSERT REC

00140 EXIT

Chapter 3 MANTIS programming language

220 P39-5002-00

EXP
The EXP function returns the value of natural (e) to the power of a, where
a is any arithmetic expression.

EXP(a)

a

Description Required. Specifies any valid arithmetic expression.

General consideration

 See also “E” on page 210 and “LOG” on page 320.

Example The following example shows how the EXP function works:

Example Results Comments
EXP(0) 1
EXP(100) .268811714E44
EXP(-34) .171390843E-14
EXP(PI) 23.1406926

FALSE

MANTIS Language 221

FALSE
The FALSE function is a MANTIS constant that returns the value zero.

FALSE

General considerations

♦ Any numeric expression that evaluates to zero can be considered
FALSE for purposes of a logic statement (IF, UNTIL, WHEN, and
WHILE). For example, the expression NUMBER_OF_ERRORS will
evaluate to FALSE when NUMBER_OF_ERRORS is zero.
Otherwise, it will evaluate to TRUE.

♦ See also “TRUE” on page 472 and “ZERO” on page 512.

Example The following example shows how the FALSE function can be used to
test the validity of user input:

00010 ENTRY CUST_ENTRY

00020 .SCREEN MAP("CUST_ENTRY")

00030 .FILE REC("CUST_FILE",PASSWORD)

00040 .FILE ST_CODES("STATE_CODES",PASSWORD)

00050 .CONVERSE MAP

00060 .WHILE MAP<>"CANCEL"

00070 ..ERROR=FALSE

00080 ..DO VALIDATE_INFO

00090 ..IF NOT(ERROR)

00100 ...INSERT REC

00110 ...CLEAR MAP

00120 ..END

Example Results Comments
FALSE 0
NOT(FALSE) 1

Chapter 3 MANTIS programming language

222 P39-5002-00

FILE
The FILE statement identifies a MANTIS internal file that your program
accesses. MANTIS retrieves the file description from your library and
places it in your work area.

FILE name1([library1:]file-name1,password1[,PREFIX][,n1])

 [,name2([library2:]file-name2,password2[,PREFIX][,n2]) . . .]

name

Description Required. Specifies a name for the file that you use in subsequent GET,
UPDATE, INSERT, and DELETE statements.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Consideration When the symbolic name is previously defined, MANTIS bypasses this
definition.

[library:]file-name

Description Required. Specifies the name of the file profile as it was saved during file
design.

Format 1–33 character text expression that evaluates to a valid file profile name

Considerations

♦ MANTIS translates this expression to uppercase upon execution of
your program.

♦ If the file is in another user’s library, you can access it by specifying
the name of the user in whose library it does reside (library:). If this
parameter is used, the colon (:) is required.

♦ If the file does reside in your library, you may supply the file view
name only. If you want this entity to be HPO bound, the library name
is required, even if it is your own library.

FILE

MANTIS Language 223

password

Description Required. Specifies the password valid for the type of file access your
program needs (e.g., read only, update, insert/delete).

Format Text expression that evaluates to a valid password

Considerations

♦ MANTIS does not translate the password expression to uppercase
upon execution of your program, and the password expression must
match exactly one of the passwords assigned in file design.

♦ Insert/delete allows read and update actions.

♦ When you use the n parameter to indicate multiple buffers, you
should also add the LEVEL=n option to GET, UPDATE, INSERT, and
DELETE statements.

PREFIX

Description Optional. Indicates that MANTIS places the symbolic name and an
underscore before all field names associated with this file. For example,
if you code:
FILE CUST("CUSTOMER",PASSWORD,PREFIX)

…and the file CUSTOMER has fields NAME and ADDR_LINE1, the
MANTIS program would refer to those fields as CUST_NAME and
CUST_ADDR_LINE1.

Format Must be coded exactly as shown

Considerations

♦ Inhibits auto-mapping of variables because field names with PREFIX
do not usually match the field names set up in Screen Design or in
other entities.

Chapter 3 MANTIS programming language

224 P39-5002-00

♦ You can use PREFIX to keep multiple views of the same Internal File
and yet have independent variable values. For example, you may
wish to:

- Enter data on a screen and automap to a file.

- Non-destructively read that same file to check for other current
values.

In order to do both of these things, you can use a PREFIXed FILE
view to read for current values but not affect the data entered on the
screen. The following example shows how you can use the
VALIDATE file to achieve this:
FILE REC("CUSTOMER",PASSWORD)

FILE VALIDATE("CUSTOMER",PASSWORD,PREFIX)

♦ You can use PREFIXed FILEs to have multiple, independent
positions within a file. The following example shows how you can
use the SHADOW file to achieve this:
FILE REC("CUSTOMER",PASSWORD)

FILE SHADOW("CUSTOMER",PASSWORD,PREFIX)

♦ You can use PREFIX in combination with Level to have both single-
occurrence and multiple-occurrence views of a file. For example:
FILE DETAIL("CUSTOMER",PASSWORD,PREFIX)

FILE BROWSE("CUSTOMER",PASSWORD,PREFIX,20)

...

IF CURSOR(BROWSE_MAP,BROWSE_NAME(I))AND BROWSE_MAP="PF1"

.GET DETAIL (BROWSE_NAME(I))

.CONVERSE DETAIL_MAP

END

♦ You can use PREFIX when you do not want similarly-named fields to
automap between the same or different entity types. For example:
FILE CUST("CUSTOMER",PASSWORD,PREFIX)

FILE VENDOR("VENDOR",PASSWORD,PREFIX)

FILE EMPL("EMPLOYEE",PASSWORD,PREFIX)

...

IF CUST_NAME=VENDOR_NAME

...

IF EMPL_NAME=CUST_NAME

FILE

MANTIS Language 225

n

Description Optional. Indicates how many buffers MANTIS should allocate to this file.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1 through n,
where n is the maximum buffer number, as defined in the corresponding
ACCESS statement

Consideration MANTIS uses only the integer portion of n.

General considerations

♦ You cannot use LEVEL on GET, UPDATE, INSERT, and DELETE
statements if LEVEL is omitted on the FILE statement.

♦ The Setpray Exit can affect this statement. See your Master User for
details.

♦ See also “DELETE” on page 183, “FSI” on page 232, “GET” on
page 234, “INSERT” on page 277, “UPDATE” on page 479, and
“TRAP” on page 469.

Example The following example shows how MANTIS uses the FILE statement to
access a file record:
00020 .FILE RECORD("INDEX","SERENDIPITY",16)

00030 .SCREEN MAP("INDEX")

00040 .WHILE RECORD<>"END" AND MAP<>"CANCEL"

00050 ..CLEAR MAP:BUFFER=1

00070 ..GET RECORD LEVEL=BUFFER

00080 ..WHILE RECORD<>"END" AND BUFFER<17

00090 ...BUFFER=BUFFER+1

00100 ...GET RECORD LEVEL=BUFFER

00110 ..END

00120 ..CONVERSE MAP

00130 .END

Chapter 3 MANTIS programming language

226 P39-5002-00

FOR-END
Use the FOR-END statements to execute a block of statements
repeatedly while a counter is incremented or decremented through a
specified range of values.

FOR counter=initial TO final [BY increment]
 .
 statements
 .
END

counter

Description Required. Specifies the numeric variable or array element that MANTIS
uses as a counter.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

initial

Description Required. Specifies the initial value of the counter.

Format Arithmetic expression

Consideration MANTIS evaluates the expression only before the first loop iteration.

final

Description Required. Specifies the final value with which the counter is compared.

Format Arithmetic expression

Consideration MANTIS evaluates the expression at each loop iteration.

FOR-END

MANTIS Language 227

BY increment

Description Optional. Specifies the increment to be added to the counter after each
execution of the block of statements.

Default BY 1

Format Arithmetic expression

Consideration MANTIS evaluates the expression at each loop iteration.

General considerations

♦ MANTIS sets the counter to the initial value, which is evaluated only
once. MANTIS evaluates the final value and the increment prior to
each execution of the block of statements.

♦ MANTIS repeatedly executes the block of statements while the
counter is less than or equal to the final value and the increment is
positive, or the counter is greater than or equal to the final value and
the increment is negative. After executing each block of statements,
MANTIS adds the increment to the counter. The following table
summarizes the loop condition tests after the first execution:

Add increment
to counter,
then if…

Counter>final

Counter=final

Counter<Final

Increment > 0 Terminate Execute Execute
Increment = 0 Terminate Terminate Terminate
Increment < 0 Execute Execute Terminate

Chapter 3 MANTIS programming language

228 P39-5002-00

♦ MANTIS will not execute the block of statements when the initial
value exceeds the final value (when the increment is positive) or the
initial value is less than the final value (when the increment is
negative). The following summarizes the loop condition tests for first
execution:

 Initial>final Initial=final Initial<Final
Increment > 0 Terminate Execute Execute
Increment = 0 Terminate Terminate Terminate
Increment < 0 Execute Execute Terminate

♦ If the block of statements changes the values of the counter, the final

value, or the increment, this value is reflected in the next comparison
of the counter and the final value.

♦ For greater efficiency, if the final value or increment are expressions
that do not change within the loop, assign them to a symbolic name
so that they do not need to be evaluated on each iteration of the loop.
(See the following example using FINAL).

♦ See also “BREAK” on page 136, “IF-ELSE-END” on page 274,
“NEXT” on page 335, “WHEN-END” on page 508, “WHILE-END” on
page 510, and “UNTIL-END” on page 478.

FOR-END

MANTIS Language 229

Example The following example shows the FOR-END statement using literals.
Note that the statement within the loop is executed five times, and the
loop counter (I) will be equal to 6 when statement 50 is executed.
10 FOR I = 1 TO 5 BY 1

20 .NUM(I)=I

40 END

50 A=NUM(3)

The following example shows the FOR-END statement using initial, final,
and increment variables:
10 BIG I,INITIAL,FINAL,INCREMENT:TEXT STRING(100)

20 INITIAL=10

30 FINAL=SIZE(STRING,"MAX")

40 INCREMENT=10

50 FOR I=INITIAL TO FINAL BY INCREMENT

60 . (statement logic)

70 END

The following example shows the FOR-END using a negative increment:
10 FOR J=SIZE(STRING) TO 1 BY -1

20 .IF STRING(J,J)<>"b/" <-- If this statement evaluates to TRUE,
30 ..BREAK then logic will continue at line 60.
40 .END

50 END

.

.

.

Chapter 3 MANTIS programming language

230 P39-5002-00

FORMAT
The FORMAT function returns a text string conversion of a numeric
expression according to the supplied edit mask. This function can be
used to format numeric fields into text for database, SHOW, or any other
text output. This function also allows you to test screen design masks for
expected results.

FORMAT(a, mask [,digit-select-character])

a

Description Required. Specifies the numeric expression you want to format with an
edit mask.

mask

Description Optional. Specifies the edit mask.

Format A 1-254 character text expression

Consideration Blank characters in the mask must appear as blanks. The blank-fill
character used in screen design (default is the vertical bar) is not
required.

digit-select-character

Description Optional. Specifies the character in the mask operand that is filled with
digits from a numeric expression.

Default Installation defined (distributed with #)

Format A 1-character text expression containing the mask character

General considerations

♦ A discussion of valid edit masks appears in MANTIS Facilities,
OS/390, VSE/ESA, P39-5001.

♦ Use the FORMAT function with the SHOW command to test your edit
mask or to produce masked output on SHOWs.

♦ See also “Designing screens” (mask characters/formatting) on
page 556 and “TXT” on page 473.

FORMAT

MANTIS Language 231

Examples

Example Results Comments
FORMAT(100,"$$#Z.##") "$100.00" Floating $ sign

and zero.
PHONE=5136122300

FORMAT(PHONE, "(###) ###-
####")

"(513) 612-2300" Formatting and
punctuation.

FORMAT (PART_NO, "PART #
?????","?")

"PART # 38765" Uses literals
(PART) and
allows # to be
used as literal
text. “?” is the
digit-select
character.

FORMAT(ZERO,"#####Z") "0" Single zero
forced.

FORMAT(123,"Z#####") "000123" Leading zeros
forced.

♦ The following example shows that the FORMAT function can provide

formatted output for SHOW fields or fields on a screen or file that are
not normally formatted:
00010 SHOW NAME,AT(40), FORMAT(ACCT_NO,"Z##-####-#"), AT(55),

00020 . FORMAT(BALANCE, "##,##Z.##CR")

 Produces the following result:
HENRIETTA JOHNSON 034-4783-1 127.89CR

Chapter 3 MANTIS programming language

232 P39-5002-00

FSI
The FSI function indicates the success or failure of a logical view,
MANTIS file, or external file GET, DELETE, INSERT, RELEASE, or
UPDATE.

FSI(name[,msg])

name

Description Required. Specifies the name for the logical view, MANTIS file, or an
external file view.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

msg

Description Optional. Specifies the symbolic name you supply for the External file
DELETE, GET, INSERT, or UPDATE function message.

Format A MANTIS symbolic name, specified as a text variable, with a length of at
least 40 (see “Symbolic names” on page 24)

General considerations

♦ MANTIS file and external file DELETE generic ALL returns the
number of records deleted in the message area of the FSI in the
format XXXXX DELETED RECORDS. All asterisks in the XXXXX
area indicate a record number greater than five characters.

♦ Function Status Indicators (FSIs) reflect the success or failure of your
command. See “Status functions” on page 517 for more details on
FSIs, logical views, and external files.

♦ See also “ASI” on page 93 and “VSI” on page 505.

FSI

MANTIS Language 233

Examples

♦ The following example shows the basic use of the FSI function:
00020 VIEW CUSTOMERS("NEW_CUSTOMERS")

.

.

.

00110 GET CUSTOMERS

00120 IF FSI(CUSTOMERS)<>"GOOD"

.

.

♦ The following example shows how to use the FSI function to test for a
specific value and have MANTIS return an error message:

00010 ACCESS X ("TEXT","PSW")

00020 TEXT MESSAGE(40)

00030 TRAP X ON

00040 GET X FIRST

00050 IF X="ERROR"

00060 .IF FSI(X,MESSAGE)="UNAVAILABLE"

00070 ..SHOW "FILE TEST IS UNAVAILABLE"

00080 .ELSE

00090 ..SHOW "FILE TEST GET FAILED:STATUS="+MESSAGE

00100 .END

00105 .WAIT

00120 END

♦ The following example shows the debugging use of FSI:
COMMAND ===> SHOW FSI(X,MESSAGE), MESSAGE

Chapter 3 MANTIS programming language

234 P39-5002-00

GET
The GET statement reads a record from an external file, a MANTIS file, a
personal computer file, an RDM logical view, or a TOTAL DBMS view.
Before you can read from a file or view, you must open it by processing
the associated FILE, TOTAL, ACCESS, or VIEW statement.

GET (External file)

GET

(, , . . .)[EQUAL]
FIRST
NEXT
PRIOR
LAST

[ENQUEUE] [LEVEL =] file - name key1 key2 n�

�

�
�
�
�
�

�

�

�
�
�
�
�

file-name

Description Required. Specifies the name (as defined in a previously executed
ACCESS statement) of the file you want to access.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

GET

MANTIS Language 235

key1,key2,…

Description Optional. Specifies the record key(s) of the desired record. MANTIS
assigns values to the corresponding key elements in the file profile (that
is, key1 is the first key element, key2 is the second, and so on). For
external files, if you omit this parameter, MANTIS retrieves the next
record.

Format Text, numeric, or DBCS expression

Considerations

♦ Not all keys need to be specified.

♦ For SEQUENTIAL files, the key you supply specifies the Relative
Byte Address (RBA) of the record to be retrieved. The first record
has an RBA of 0, and each subsequent record has an RBA value of
the previous record plus its length.

♦ For NUMBERED files, the key is the Relative Record Number (RRN).
The first record has an RRN of 1.

♦ The order of the specified keys must correspond to the order of key
declarations in the file. You cannot omit a key that occurs before or
between keys you want to specify. For example, you cannot specify
key1 and key3 without specifying key2, or specify key3 without
specifying both key1 and key2.

EQUAL

Description Optional. Tells MANTIS to retrieve only an exact key match. MANTIS
returns “NOTFOUND” if it cannot find the identical key.

Chapter 3 MANTIS programming language

236 P39-5002-00

FIRST/NEXT/PRIOR/LAST

Description Optional. Specifies the location of the logical record that is to be deleted
relative to the current positioning.

Default NEXT

Format Must be coded exactly as shown

Options FIRST Retrieves a record at the beginning of an external file in a
sequential retrieval mode.

NEXT Retrieves the subsequent file record in a keyless retrieval mode.

PRIOR Retrieves the previous sequential record in sequential retrieval
mode. If no position exists in a file, the last record is returned with a
return status of “NEXT”.

LAST Retrieves the last record in an external file in a sequential retrieval
mode.

Considerations

♦ For SEQUENTIAL files, a GET FIRST is required to return the first
record in the file.

♦ GET PRIOR and GET LAST are not supported in the IMS
environment.

GET

MANTIS Language 237

ENQUEUE

Description Optional. Retrieves the record and holds it where it can be updated or
deleted without another task having access to it.

Considerations

♦ Only one ENQUEUEd record per external file is permitted at one
time. If you have a LEVELed file, only the last record retrieved is
ENQUEUEed.

♦ ENQUEUEs are released on the dequeue that occurs in a
subsequent GET file-name, interface call, DEQUEUE file-name,
COMMIT, or Terminal I/O (with COMMIT ON).

♦ GET record ENQUEUE operation locks out all other users’
modifications to the record being retrieved until the record has been
dequeued.

♦ ENQUEUEing on a record prevents any other application from
updating the record; therefore, if you choose not to update or delete
the record, dequeue the record as soon as possible. Failure to do so
may degrade performance because other applications wait for
access to the record.

♦ Issue the ENQUEUE option only when you probably will
update/delete the record. Otherwise, you may degrade overall
performance by serializing resources. However, using the GET …
ENQUEUE will save a second READ if you UPDATE or DELETE the
record.

♦ If you UPDATE or DELETE a record obtained via a GET …
ENQUEUE, that record is held until the end of the logical unit of work.

♦ The GET with ENQUEUE option checks the file’s UPDATE password
to determine if an update is allowed; if not, a GET without ENQUEUE
is issued. Any attempt to update or delete after that will return an
error message or a “LOCK” status.

Chapter 3 MANTIS programming language

238 P39-5002-00

♦ ENQUEUE can be specified when running MANTIS in batch, but has
no meaning in this mode.

♦ If you have multiple ACCESS statements describing the same
external VSAM file, only the last GET with ENQUEUE (regardless of
which ACCESS statement it pertains to) is enqueued. Incorrect use
of the GET with ENQUEUE, with multiple ACCESS statements
defining the same external, can result in errors on subsequent
UPDATE or DELETE statements in some environments. For
example, the following program stops and issues an error when run
under CICS:

00030 .ENTRY ENQUEUE_PROGRAM

00040 .ACCESS F1("USER:FILE1","PWD")

00050 ..ACCESS F2("USER:FILE2","PWD")

00060 .GET F1("KEY1") EQUAL ENQUEUE

00070 .GET F2("KEY2") EQUAL ENQUEUE

00080 .UPDATE F1

00090 .UPDATE F2

00100 .COMMIT

00110 .EXIT

 The FILE1 and FILE2 external file views both reference the same
physical data set. MANTIS issues an error when processing the
“UPDATE F1” statement (line 80) under CICS, because CICS returns
an error when MANTIS attempts an internal get-for-update against
F1. CICS allows only one get-for-update operation per data set at a
time, and an outstanding get-for-update request is already in effect
for the data set from the “GET F2 . . .ENQUEUE” statement.

GET

MANTIS Language 239

LEVEL=n

Description Optional. Specifies the number of the buffer that contains the record you
want to get.

Default 1

Format Arithmetic expression that evaluates to a value in the range of 1 through
m, where m is the maximum buffer number, as defined in the
corresponding ACCESS statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

General considerations

♦ An external file open (when required) is issued on the first DELETE,
GET, INSERT, or UPDATE to the file.

♦ For INDEXED files, the key you supply in the GET statement must
correspond partially or completely to the key you specify during the
file view design.

♦ For SEQUENTIAL files, MANTIS returns the RBA of the retrieved
record in the associated reference variable.

♦ For NUMBERED files, MANTIS returns the RRN of the retrieved
record in the associated reference variable.

Chapter 3 MANTIS programming language

240 P39-5002-00

♦ MANTIS returns a text string in the variable called file-name that
reflects the status of the operation:

Returned text string Description
“FOUND” MANTIS successfully retrieved the record

identified by the supplied key.
“END” MANTIS did not retrieve the record

because it reached the end of the file
using the NEXT option or the beginning of
the file using the PRIOR option.

“NEXT” When you use a partial key for a generic
search, MANTIS returns a status of
“NEXT” in the file-name unless it reaches
the end of file (and a status of “END”).
MANTIS retrieved the next record in a
sequential GET statement (without a key);
or MANTIS retrieved the previous
sequential record because you issued the
GET statement with PRIOR option; or
MANTIS retrieved the last record in a file
using the LAST option (or the FIRST
option returned the first record). MANTIS
also returns this value where it could not
locate the actual key, and the system
returned the next record in the sequence.

“NOTFOUND” You requested an exact key match with
the “EQUAL” option, but MANTIS could
not find an exact match. MANTIS doesn’t
change program variables for elements in
the file.
A GET EQUAL against a nonunique
alternate key index returns a NOTFOUND
if the key is in fact a duplicate.

“LOCK” * The password specified in the ACCESS
statement for this file view is not valid.

GET

MANTIS Language 241

Returned text string Description
“ERROR” * MANTIS received an error status. Use the

FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during record

retrieval.
♦ RBA specified for a GET to

SEQUENTIAL files was not at a record
boundary.

♦ RRN for NUMBERED files specified a
record number outside the file range.

♦ The file view definition does not
correctly reflect the physical file you are
accessing.

♦ The External file exit canceled the
operation.

“DATA” * A field that should be numeric is not.
“NOTOPEN” * The external file is not open.
“NOTSUPP” * You requested an operation that is not

supported by the TP monitor.

* Returned only when TRAP is in effect for the file.

Chapter 3 MANTIS programming language

242 P39-5002-00

♦ The following table clarifies the meaning of file status “FOUND”,
“NOTFOUND”, for GET options “NEXT”, and “EQUAL” when used
with full or partial keys:

Key Option Status FSI Comments
Full EQUAL FOUND GOOD Exact match. Record

retrieved.
Full EQUAL NOTFOUND NOTFOUND No match. Record not

retrieved.
Partial EQUAL NOTFOUND NOTFOUND Will never match. Record

was not retrieved. Do not use
EQUAL with a partial key.

Full NEXT FOUND GOOD Exact match. Record
retrieved.

Full NEXT NEXT NOTFOUND Close match. Record
retrieved, but key is higher
than supplied key.

Full NEXT END NOTFOUND No match. Record not
retrieved. Key supplied is
higher than any key in the file.

Partial NEXT NEXT NOTFOUND Exact or close match. Record
retrieved. May be an exact
match for the supplied key or
may be next record after
supplied key. Compare the
supplied key to the returned
key to determine which is the
case.

Partial NEXT END NOTFOUND No match. Record not
retrieved. Key supplied is
higher than any key in the file.

♦ If you issue GET EQUAL, a subsequent GET without keys, LAST, or

FIRST returns the next sequential record. This occurs even if
MANTIS returns “NOTFOUND” on the GET EQUAL.

♦ Sequential GETs (FIRST, LAST, NEXT, or PRIOR) issued against an
empty file returns “END”.

♦ For extended external file status messages and Function Status
Indicators (FSIs), see “Extended status messages for MANTIS and
external files” on page 521.

GET

MANTIS Language 243

♦ When more than one file needs to be ENQUEUEd, the application
program must ensure that the sequence of the enqueued files is
always the same and is identical to the sequence used by other
programs doing ENQUEUEs. If this rule is not observed, application
program lockouts can occur due to two or more programs trying to
obtain exclusive control of resources that are already controlled by
these programs.

♦ The External File Exit can affect this statement. See your Master
User for details.

♦ See also “DELETE” on page 183, “DEQUEUE” on page 203, “FSI” on
page 232, the ENQUEUE parameter under the “GET” statements
(the “GET” statements start on page 234), “INSERT” on page 277,
“TRAP” on page 469, and “UPDATE” on page 479.

Example The following example shows how to code an EXTERNAL FILE GET. In
this environment, the file is opened on the first GET statement.
00020 .ACCESS RECORD("INDEX","SERENDIPITY",16)

00030 .SCREEN MAP("INDEX")

00040 .CONVERSE MAP

00050 .COUNTER=1

00060 .WHILE MAP<>"CANCEL" AND COUNTER<17

00070 ..WHEN INDICATOR(COUNTER)="G"

00080 ...GET RECORD LEVEL=COUNTER

00090 ..WHEN INDICATOR(COUNTER)="D"

00100 ...DELETE RECORD LEVEL=COUNTER

.

.

.

Chapter 3 MANTIS programming language

244 P39-5002-00

MANTIS external VSAM KSDS nonunique alternate key
processing

The problem of skipping records
A few basic rules MANTIS follows:

♦ Records are accessed directly (GET filename(key)EQUAL) or
sequentially (GET filename(key), GET FIRST, GET NEXT, GET
PRIOR, GET LAST). In CICS, READ is used for direct access and
STARTBR, RESETBR, READNEXT and READPREV are used for
sequential access.

♦ When accessed sequentially, if a valid browse pointer does not exist,
a browse pointer is established using a START BROWSE command.
Direct access does not start a browse. The browse is terminated
under the following conditions:

- CALL

- COMMIT

- CONVERSE

- DELETE

- EXIT of dolevel where ACCESS defined

- FAULT (error message)

- GET key EQUAL

- INSERT

- I/O to the file from another ACCESS (string stealing)

- OBTAIN

- PERFORM

- PROMPT

- RESET

- SHOW when terminal I/O is forced

- UPDATE

- WAIT

GET

MANTIS Language 245

♦ MANTIS saves the key of the record after a successful direct or
sequential GET. This key is used in subsequent I/O where a key is
not specified.

♦ After a browse has been terminated, on a subsequent GET NEXT,
MANTIS reestablishes the browse pointer by adding a binary one to
the key saved from the last successful GET and issuing a START
BROWSE.

With the previous rules in mind, MANTIS’ processing of nonunique
alternate keys can be understood. The following examples are
oversimplified and do not contain all error checking needed for a good
program:

Example 1
10 ACCESS FILE1(...)

20 GET FILE1

30 WHILE FILE1 <> "END"

40 .SHOW SEC_KEY:WAIT

50 .GET FILE1

60 END

In this example, the key field for an ACCESS defined for an alternate
index is being displayed after each GET NEXT. In statement 20, a
START BROWSE and a READ NEXT are issued. If the read is
successful, the key is saved. In statement 40, the terminal I/O terminates
the browse. In statement 50, another START BROWSE is issued using
a key equal to one more than the key saved from the last successful
GET. If this program is run against a file with nonunique alternate keys,
only the first of each set of equal keys is displayed due to the
repositioning of the lost browse pointer. Removing the WAIT from
statement 40 and adding a WAIT at the end of this program nearly solves
this problem. After enough SHOWs have been issued to fill the screen,
MANTIS does an implied WAIT that terminates the browse. If this
implied WAIT occurs in the middle of a set of equal keys, the remaining
equal keys will be skipped when MANTIS reestablishes the browse
pointer.

Chapter 3 MANTIS programming language

246 P39-5002-00

To solve this problem, the application must take into account when the
browse pointer may be lost due to a CONVERSE, COMMIT, and so on.
One solution is to save the key value and maintain a counter that is reset
at the beginning of each new set of equal keys. After the browse pointer
is lost, the application uses the key and counter to reposition on the
correct record by issuing a GET filename(key) and a number of GET
NEXTs equal to the counter value.

An alternate solution is to read all of the records having the same key into
an array before issuing the MANTIS statement that loses the browse
pointer. Then the record data may be displayed from the array. This
second solution may not be practical in some cases. There may be too
much data involved. Or updates may have been done to these records
by another transaction during your terminal I/O.

Example 2
10 ACCESS FILE1(...)

20 GET FILE1(key)EQUAL

30 WHILE FILE1 <> "END"

40 .SHOW SEC_KEY

50 .GET FILE1

60 END

70 WAIT

This example is similar to the first, except that line 20 has been changed
to a GET EQUAL and the WAIT has been placed at the end of the
program.

Assume:

♦ The screen has an infinite number of rows so that we don’t have to
be concerned with losing the browse pointer due to an implied WAIT.

♦ The alternate key values in the first and second records match the
key specified in statement 20. (See the following table.)

♦ The alternate key value in the third record does not match the key
specified in statement 20.

GET

MANTIS Language 247

In statement 20, the GET EQUAL reads the first record successfully and
saves the key, but does not start a browse. The first time statement 50 is
executed, MANTIS skips the second record and reads the third record.
This is because a browse has not been started. Consequently MANTIS
adds a binary one to the key saved in statement 20 and starts a browse
with that key. If statement 20 is changed to “GET FILE1(key)” the
problem of skipping records is solved because statement 20 will now
start the browse.

A comparison of GET filename(key) and GET
filename(key)EQUAL
Assume the following alternate key values:

Record no. Alt. key Value

 1 A

 2 A

 3 C

 4 C

 5 D

Chapter 3 MANTIS programming language

248 P39-5002-00

The following table summarizes what is returned for various statements:

Statement

FILE1

FSI(FILE1,
MESSAGE)

MESSAGE

Data for record

GET FILE1("A") FOUND GOOD "" 1

GET FILE1("A")EQUAL FOUND GOOD filename
DUPLICATE
KEY

1

GET FILE1("B") NEXT NOTFOUND "" 3

GET FILE1("B")EQUAL NOTFOUND NOTFOUND "" None

GET FILE1("D")EQUAL FOUND GOOD "" 5

GET FILE1(“B”)EQUAL returns a file status of NOTFOUND, but still
saves key “B”. A subsequent GET FILE1 NEXT returns record 3.

GET

MANTIS Language 249

GET (MANTIS file)

GET

(, , . . .)[EQUAL]
FIRST
NEXT
PRIOR
LAST

[ENQUEUE] [LEVEL =]file - name key1 key2 n�

�

�
�
�
�
�

�

�

�
�
�
�
�

file-name

Description Required. Specifies the name (as defined in a previously executed FILE
statement) of the file you want to access.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

key1,key2,…

Description Optional. Specifies the record key(s) of the desired record. MANTIS
assigns values to the corresponding key elements in the file profile (that
is, key1 is the first key element key2 is the second, and so on).

Format An arithmetic, text, or DBCS expression

Considerations

♦ Not all keys need to be specified.

♦ The order of the specified keys must correspond to the order of key
declarations in the file. You cannot omit a key that occurs before or
between keys that you want to specify. For example, you cannot
specify key1 and key3 without specifying key2, or specify key3
without specifying both key1 and key2.

EQUAL

Description Optional. Tells MANTIS to retrieve only an exact key match. MANTIS
returns “NOTFOUND” if it cannot find the identical key.

Consideration If you issue GET EQUAL, a subsequent GET without keys, LAST, or
FIRST returns the next sequential record. This occurs even if MANTIS
returns “NOTFOUND” on the GET EQUAL.

Chapter 3 MANTIS programming language

250 P39-5002-00

FIRST/NEXT/PRIOR/LAST

Description Optional. Specifies the location of the logical record that is to be deleted
relative to the current positioning.

Default NEXT

Format Must be coded exactly as shown

Options FIRST Retrieves a record at the beginning of a MANTIS file in a
sequential retrieval mode.

NEXT Retrieves the subsequent file record in a keyless retrieval mode.

PRIOR Retrieves the previous sequential record in sequential retrieval
mode. If no position exists in a file, the last record is returned with a
return status of “NEXT”.

LAST Retrieves the last record in a file in a sequential retrieval mode.

Considerations

♦ GET FILE FIRST retrieves the first key on the file. GET FILE (key)
starts reading records at the key specified position. GET FILE (key)
EQUAL retrieves a specific record. GET FILE retrieves the next
record on the file.

♦ GET PRIOR and GET LAST are not supported in the IMS
environment, or by Entity Transformers.

ENQUEUE

Description Optional. This parameter is for prototyping purposes only because it is
not valid for MANTIS internal files and is ignored if specified. ENQUEUE
is useful if you plan to convert the file later to an EXTERNAL FILE and
want to use ENQUEUE capabilities there.

GET

MANTIS Language 251

LEVEL=n

Description Optional. Specifies the number of the buffer containing the record to get.

Default 1

Format Arithmetic expression that evaluates a value in the range of 1 through m,
where m is the maximum buffer number, as defined in the corresponding
FILE statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

Chapter 3 MANTIS programming language

252 P39-5002-00

General considerations

♦ MANTIS returns a text string in the variable named file-name that
reflects the status of the operation:

Returned text string Description
“FOUND” MANTIS successfully retrieved the record

identified by the key you supplied.
“NEXT” When you use a partial key for a generic

search, MANTIS returns a status of
“NEXT” in the file-name unless it reaches
the end of file (and a status of “END”).
NEXT indicates that MANTIS retrieved the
next record in a sequential GET statement
(without a key); or MANTIS retrieved the
previous sequential record because you
issued the GET statement with PRIOR
option; or MANTIS retrieved the last
record in a file using the LAST option (or
the FIRST option returned the first record).
MANTIS also returns this value where it
could not locate the actual key, and the
system returned the next record in the
sequence.

“END” MANTIS failed to retrieve the record
because it reached the end of the file
using the NEXT option or the beginning of
the file using the PRIOR option.

“NOTFOUND” MANTIS could not find the record you
specified using the key and EQUAL
options.

“ERROR” * MANTIS received an error status. Use the
FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during record

retrieval.
♦ The SETPRAY Exit canceled the

operation.
“LOCK” * The password specified in the FILE

statement is invalid.

 * Returned only when TRAP is in effect for the file.

GET

MANTIS Language 253

♦ For extended MANTIS file status messages and Function Status
Indicators (FSIs), see “Extended status messages for MANTIS and
external files” on page 521.

♦ Sequential GETs (FIRST, LAST, NEXT, or PRIOR) issued against an
empty file returns “END”.

♦ ENQUEUEing on MANTIS internal files is ignored.

♦ The Setpray Exit can affect this statement. See your Master User for
details.

♦ See also “DELETE” on page 183, “FSI” on page 232, “INSERT” on
page 277, “TRAP” on page 469, and “UPDATE” on page 479.

Example The following example shows how a MANTIS file is accessed via GETs
in keyed retrieval mode and sequential retrieval mode:
00020 FILE RECORD("INDEX","SERENDIPITY",16)

00030 SCREEN MAP("INDEX")

00040 WHILE RECORD<>"END" AND MAP<>"CANCEL"

00050 .CLEAR MAP:BUFFER=1

00070 .GET RECORD("WILLIAMS")LEVEL=BUFFER

00080 .WHILE RECORD<>"END" AND BUFFER<17

00090 ..BUFFER=BUFFER+1

00100 ..GET RECORD LEVEL=BUFFER

00110 .END

00120 .CONVERSE MAP

00130 END

Chapter 3 MANTIS programming language

254 P39-5002-00

GET (Personal computer file)

GET

()[EQUAL]
FIRST
NEXT
PRIOR
LAST

 [LEVEL =] file - name key n�

�

�
�
�
�
�

�

�

�
�
�
�
�

file-name

Description Required. Specifies the name (as defined in a previously executed
ACCESS statement) of the file you want to access.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

key

Description Optional. Specifies the key(s) of the desired record. MANTIS assigns
values to the corresponding key element in the file profile.

Consideration For SEQUENTIAL files, the key is the Relative Byte Address (RBA). For
NUMBERED files, the key is the Relative Record Number (RRN). The
first record had an RRN of 1.

EQUAL

Description Optional. Tells MANTIS to retrieve only an exact key match.

Consideration MANTIS returns “NOTFOUND” if it cannot find the identical key.

FIRST/NEXT/PRIOR/LAST

Description Optional. Specifies the location of the logical record that is to be deleted
relative to the current positioning.

Default NEXT

Options FIRST Retrieves a record at the beginning of a file in a keyless retrieval
mode.

NEXT Retrieves the subsequent record in a file.

PRIOR Retrieves the previous record in a file.

LAST Retrieves the last record in a file.

GET

MANTIS Language 255

LEVEL=n

Description Optional. Specifies the number of the buffer that contains the record you
want to get.

Default 1

Format Arithmetic expression that evaluates to a value in the range of 1 through
m, where m is the maximum buffer number, as defined in the
corresponding ACCESS statement

Consideration

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

Chapter 3 MANTIS programming language

256 P39-5002-00

General considerations

♦ MANTIS returns a text string in the variable named file-name that
reflects the status of the operation.

Returned text string Description
“FOUND” MANTIS successfully retrieved the record

identified by the key you supplied.
“NEXT” MANTIS retrieved the next record in

sequence because you issued the GET
statement without a key. MANTIS also
returns this value for a GET FIRST
statement or for a GET PRIOR statement.

“END” MANTIS failed to retrieve the record for a
GET NEXT statement because it reached
the end of the file. MANTIS also returns
this value for a GET PRIOR statement
when it reaches the beginning of the file.

“NOTFOUND” MANTIS returns “NOTFOUND” when it
cannot find a record you specify using the
key and EQUAL options.

“LOCK” * The password specified in the ACCESS
statement is invalid.

“ERROR” * MANTIS received an error status. Use the
FSI function (see “FSI” on page 232) for
more information.

* Returned only when TRAP is in effect for the file.

GET

MANTIS Language 257

For extended personal computer file status messages and Function
Status Indicators (FSIs), see “Extended status messages for MANTIS
and external files” on page 521.

♦ For NUMBERED files, MANTIS returns the RRN of the retrieved
record in the associated reference variable.

♦ For SEQUENTIAL files, MANTIS returns the RBA of the retrieved
record.

♦ For NUMBERED PC files, if a NUMBERED record consists entirely of
binary zeros, PC CONTACT assumes the record does not exist and
does not return a value for the record.

♦ Files residing on personal computer files can only be accessed by
that personal computer user.

♦ For PC files, MANTIS uses buffering for GET NEXTs and INSERTs
to increase the speed of uploads and downloads. A common upload
program issues many GET NEXTs in succession against a PC file,
writing the records to a mainframe file. On the first GET NEXT,
MANTIS receives only the number of records that fit in the buffer,
beginning with the record expected for that GET NEXT. For
subsequent GET NEXTs, those records are usually already in the
buffer, eliminating unnecessary I/O to the PC. (This buffering is
independent of LEVEL usage, which refers to MANTIS variables
buffering.)

Chapter 3 MANTIS programming language

258 P39-5002-00

♦ To take full advantage of GET NEXT buffering, avoid the following
events that cause an INSERT buffer to be sent to the PC or a GET
NEXT buffer to be discarded:

- Task termination

- Program termination

- EXIT from an externally DOne program containing the ACCESS
statement for the PC file (a special case of program termination)

- COMMIT

- Screen I/O

- Perform of an external interface

- Change of I/O operation such as changing from a GET NEXT to
a GET (by key), GET PRIOR, GET LAST, UPDATE, INSERT, or
DELETE

- Full buffer (for INSERTs)

♦ All GET NEXT errors are trappable using the TRAP statement
because the error is detected at the time the MANTIS program
issues the GET NEXT.

♦ See also “DELETE” on page 183, “FSI” on page 232, “INSERT” on
page 277, “TRAP” on page 469, and “UPDATE” on page 479.

Example
00010 ENTRY PC_EXAMPLE

00020 .VIEW V_REC("SAMPLE_VIEW")

00030 .ACCESS PC_REC("SAMPLE_PC_ONE","REMOVE")

00040 .GET PC_REC

00050 .WHILE PC_REC<>"END"

00060 ..INSERT V_REC

00070 ..GET PC_REC

00080 .END

00090 .SHOW "FILE TRANSFER COMPLETE":WAIT

00100 EXIT

GET

MANTIS Language 259

GET (RDM logical view)

[][]GET
(, ,. . .)
AT
SAME

NEXT
PRIOR
FIRST
LAST

ENQUEUE LEVEL =view - name
key1 key2

mark - name n
�

�

	
	

�

�
�

�

�

	
	
	

�

�
�
�

view-name

Description Required. Specifies the name (as defined in a previously executed VIEW
statement) of the logical view you want to access.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

key1,key2,…

Description Optional. Specifies the record key(s) of the desired record. MANTIS
assigns values to the corresponding key elements in the view profile
(key1 is the first key element, key2 is the second, and so on).

Considerations

♦ Not all keys need to be specified.

♦ MANTIS treats any omitted keys as generic keys. Using generic
keys allows direct access to a specific record or sequential access to
many records. All occurrences of a particular unspecified key are
returned as long as the other keys are satisfied.

♦ The order of the specified keys must correspond to the order of key
declarations in the logical view. You cannot omit a key that occurs
before or between keys that you want to specify. For example, you
cannot specify key1 and key3 without specifying key2, or specify
key3 without specifying both key1 and key2.

♦ If you don’t need to be certain of the content of the logical record, you
can use a GET without the ENQUEUE option. When you execute
the UPDATE or DELETE statements, the automatic hold facility
performs the lock prior to modifying the record.

Chapter 3 MANTIS programming language

260 P39-5002-00

AT mark

Description Optional. Repositions to the logical view previously marked with the
MARK statement.

Format 4-character text expression

Consideration The mark-expression must be set by a previously executed MARK
statement.

SAME

Description Optional. Retrieves the same logical view record previously accessed. If
no current record exists, MANTIS returns a “NOTFOUND” status.

Format Must be coded exactly as shown

Consideration If there is only one logical record for a given key and you try to use the
same key with a keyed GET statement to access the logical record a
second time, you receive a “NOTFOUND” status. This message
indicates that there are no more occurrences of this particular logical
record. In order to access this same logical record, use a GET SAME
statement instead.

GET

MANTIS Language 261

FIRST/NEXT/PRIOR/LAST

Description Optional. Specifies the location of the logical record that is to be read
relative to the current positioning.

Default NEXT

Options FIRST Retrieves the first logical record in the logical view with the
specified keys. If you don’t supply keys, MANTIS returns the first record.

NEXT Retrieves the next record in the logical view with the specified
keys. If you don’t supply keys, MANTIS returns the next sequential
record. If no current record exists, GET NEXT operates as GET LAST.

PRIOR Retrieves the previous record with the specified keys. If no
current record exists, GET PRIOR operates as GET FIRST. If you don’t
supply keys, MANTIS retrieves the record before the currently
established position of a given key. However, after processing all prior
records for a key, MANTIS displays “DBMS DOES NOT SUPPORT THIS
OPERATION” and halts execution. If TRAP is in effect, MANTIS returns
“ERROR”.

LAST Retrieves the last logical view record in the logical view for the
specified keys. If you don’t supply keys, MANTIS returns the last record.

Considerations

♦ If the underlying file system cannot perform the GET PRIOR or GET
LAST functions, MANTIS displays a message and halts execution. If
TRAP is in effect, MANTIS returns the “ERROR” status.

♦ A series of GET NEXTs loops back to the first record and continues if
you don’t check for a “NOTFOUND” status.

Chapter 3 MANTIS programming language

262 P39-5002-00

ENQUEUE

Description Optional. Locks out all other users’ modifications to the logical view
record being retrieved until the record has been updated, deleted, or
dequeued by a COMMIT statement.

Format Must be coded exactly as shown

Considerations

♦ If you don’t need to be certain of the content of the logical record, you
can use a GET without the ENQUEUE option. When you execute
the UPDATE or DELETE statements, the automatic hold facility
performs the lock prior to modifying the record.

♦ If you use an ENQUEUE on any GET statement since the last
terminal I/O, MANTIS automatically issues a COMMIT prior to any
further terminal I/O.

GET

MANTIS Language 263

LEVEL=n

Description Optional. Specifies the number of the buffer that contains the record you
want to get.

Default 1

Format Arithmetic expression that evaluates to a value in the range of 1 through
m, where m is the maximum buffer number, as defined in the
corresponding VIEW statement

Consideration

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

General considerations
♦ You must execute a corresponding VIEW statement before you can

execute the GET statement.

♦ MANTIS returns a text string in the variable name view-name that
reflects the status of the operation.

Returned text string Description
“FOUND” MANTIS successfully retrieved the record

identified by the supplied key(s).
“NOTFOUND” The record identified by the supplied

key(s) doesn’t exist.
“DATA” A field that should be numeric is not.
“LOCK” * The password specified in the VIEW

statement for this view is not valid.
“ERROR” * MANTIS received an error status. Use the

FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ An RDM error occurred during

database access.
♦ You tried to perform an invalid function

on the user view.

 * Returned only when TRAP is in effect for the file.

Chapter 3 MANTIS programming language

264 P39-5002-00

♦ RDM logical view GET sets three status functions to the application
program that indicate processing results—FSI, ASI, and VSI. FSI
indicates the success or failure of your command. ASI indicates the
status of each field in the logical record. VSI indicates the highest
field status within the logical record. For a complete discussion of
these status functions, see “Status functions” on page 517.

♦ See also “ASI” on page 93, “DELETE” on page 183, “FSI” on
page 232, “INSERT” on page 277, “TRAP” on page 469, “UPDATE”
on page 479, and “VSI” on page 505.

Example The following example shows how an RDM LOGICAL VIEW GET is
coded:
00010 VIEW CUSTOMER("CUST")

00020 SCREEN MAP("CUST_UPDATE")

00050 GET CUSTOMER FIRST

00060 WHILE CUSTOMER="FOUND" AND MAP<>"CANCEL"

00090 .CONVERSE MAP

00100 .GET CUSTOMER

00140 END

GET

MANTIS Language 265

GET (TOTAL file view)

[][]

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

[FIRST]

,...),(

=LEVEL ENQUEUE

LAST
FIRST

 referAFTER
refer BEFORE

refer AT

 .) . . ,,(SET

 GET

key2key1

nkey2key1

name-file

file-name

Description Required. Specifies the name (as defined in a previously executed
TOTAL statement) of the TOTAL view you want to access.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

SET(key1,key2,...)

Description Optional. A SET is a chain of variable-entry records. Records belonging
to the SET do not have individual keys you can use to reference them.
Instead, a key identifies the whole set. Once the SET is identified, you
can retrieve individual records in a sequential manner, normally starting
at the top and going down.

Format keyn Must be a text, numeric, or DBCS expression that matches the
TOTAL definition in type, size, and other dimensions and is coded exactly
as shown

Considerations

♦ Applies to variable-entry files only.

♦ When you use the SET parameter, MANTIS automatically updates
the refer variable.

Chapter 3 MANTIS programming language

266 P39-5002-00

AT/BEFORE/AFTER/FIRST/LAST

Description Optional. Specifies the location of the logical record that is to be deleted
relative to the current positioning.

Default AFTER refer

Options AT refer Retrieves a specific record in the set.

BEFORE refer Retrieves the record prior to the one specified by refer.

AFTER refer Retrieves the record after the one specified by refer.

FIRST Retrieves the record at the beginning of the set.

LAST Retrieves the record at the end of the set.

refer

Description Optional. Identifies the position in the database file where you can locate
the record.

Format 4-character text expression

Consideration You can save and restore a refer using a text variable of at least four
characters in length. The Reference Variable name found on the TOTAL
File View Design Facility menu holds the refer value. For more details,
refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001.

key1,key2…

Description Optional. Specifies the record key(s) of the desired record. MANTIS
assigns values to the corresponding key elements in the TOTAL profile
(key1 is the first key element, key2 is the second, and so on). For
TOTAL, key applies to master files only.

Consideration Keys must correspond in number, type, and size to the TOTAL definition.

FIRST

Description Optional. Points MANTIS to the beginning of a TOTAL file in a sequential
retrieval mode.

Format Must be coded exactly as shown

GET

MANTIS Language 267

ENQUEUE

Description Optional. Locks out all other users’ modifications to the TOTAL DBMS
being retrieved until the record has been updated, deleted, or dequeued
by a COMMIT statement or terminal I/O.

Consideration Must be coded exactly as shown.

LEVEL=n

Description Optional. Specifies the number of the buffer that contains the record you
want to get.

Default 1

Format Arithmetic expression that evaluates to a value in the range of 1 through
m, where m is the maximum buffer number, as defined in the
corresponding TOTAL statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

Chapter 3 MANTIS programming language

268 P39-5002-00

General considerations

♦ MANTIS retrieves the record from the database and assigns the data
to MANTIS variables, according to the conversion rules defined in
your TOTAL view (refer to MANTIS Facilities, OS/390, VSE/ESA,
P39-5001, for details).

♦ A TOTAL file open is issued on the first DELETE, GET, INSERT, or
UPDATE.

♦ MANTIS returns a text string in a variable named view-name that
reflects the status of the operation.

Returned text string Description
“END” MANTIS failed to retrieve the record

because it reached the end of the file.
“NEXT” MANTIS retrieved the next record in

sequence because you issued the GET
statement without a key.

“FOUND” MANTIS successfully retrieved the record
identified by the supplied key.

“NOTFOUND” The master record identified by the
supplied key does not exist.

“DATA” * A field which should be numeric is not.
“LOCK” * The password specified in the TOTAL

statement for this file view is not valid.
“NOTOPEN” * The TOTAL view is not open.
“NOTAVAL” * The TOTAL file or view is not open.

* Returned only when TRAP is in effect for the file.

♦ If MANTIS returns a status of “END” after serially reading through a
master or variable file or a variable chain, the next READ starts at the
beginning of the file or chain.

♦ See also “DELETE” on page 183, “INSERT” on page 277, “TRAP” on
page 469, and “UPDATE” on page 479.

GET

MANTIS Language 269

Example The following example shows how a TOTAL file is processed and data is
retrieved using a TOTAL FILE GET:
00050 TOTAL CUSTOMERS("CLIENT","SALES")

00060 TOTAL HISTORY("PAYMENTS","TEXAS",11)

00070 TEXT CUSTOMER_ID(20)

00080 SMALL BUFFER

00090 (CUSTOMER_ID)="OUR-BEST"

00100 GET CUSTOMERS(CUSTOMER_ID)

00110 BUFFER=1

00120 GET HISTORY SET(CUSTOMER_ID)FIRST LEVEL=BUFFER

00130 WHILE HISTORY<>"END" AND BUFFER<11

00140 .BUFFER=BUFFER+1

00150 .GET HISTORY SET(CUSTOMER_ID)AFTER

00155 .'REFER(BUFFER_1)LEVEL=BUFFER

00160 END

00170 CONVERSE MAP

Chapter 3 MANTIS programming language

270 P39-5002-00

HEAD
The HEAD statement centers a heading on the top line of the
unformatted screen and sets it to high intensity.

HEAD heading

heading

Description Required. Specifies the text expression to be displayed at the top of the
screen.

Format 0–72 character text or DBCS expression

General considerations

♦ Headings do not appear when you CONVERSE a formatted screen,
but only when MANTIS displays unformatted screen output, using an
OBTAIN, SHOW, or WAIT.

You can also do an OBTAIN and SHOW for formatted screens.

♦ You can specify only one heading for each screen I/O. If more than
one HEAD statement is executed, the most recent HEAD statement
specifies the heading for a screen I/O.

♦ Specify HEAD “” to clear a previous heading because CLEAR does
not affect the heading.

♦ See also “SHOW” on page 400.

HEAD

MANTIS Language 271

Example The following example shows how the HEAD statement is used to center
a heading on a screen:
00010 ENTRY BUZZ_PHRASE_GENERATOR

00020 .DO SET_UP_VOCABULARY

00030 .HEAD"BUZZ PHRASE GENERATOR":SHOW" "

00040 .CLEAR

00050 .SHOW"I WILL GENERATE A SCREEN FULL OF"

00055 .'"'BUZZ PHRASES' EVERY"

00060 .'" TIME YOU HIT 'ENTER'. WHEN YOU WANT TO"

00065 .'" STOP, HIT 'PA2'."

00070 .UNTIL KEY="CANCEL"

00080 ..INDEX=1

00090 ..UNTIL INDEX=22

00100 ...A=INT(RND(10)+1)

00110 ...B=INT(RND(10)+1)

00120 ...C=INT(RND(10)+1)

00130 ...SHOW FIRST(A)+" "+SECOND(B)+""+NOUN(C)

00140 ...INDEX=INDEX+1

00150 ..END

00160 ..WAIT

00170 .END

00180 .CHAIN"GAMES_MENU"

00190 EXIT

Chapter 3 MANTIS programming language

272 P39-5002-00

HELP
The HELP command provides further explanation of an error message, a
command, or a list of reserved words. For statements used with END
(e.g., WHILE-END, IF-END), do not specify “END” in conjunction with the
HELP command (use HELP WHILE or HELP IF).

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

HELP
FSE
CODE_

RESERVED

HELP xxxxxx
name-command

RESERVED

Description Optional. Displays a list of all reserved words.

Format Must be coded exactly as shown

command-name

Description Optional. Specifies the name of a command or statement that you need
explained.

Consideration Must be a valid MANTIS command or statement as listed in the table
under “MANTIS language summary” on page 76.

CODE_xxxxxx

Description Optional. Specifies the first six characters of the error message code.
MANTIS Messages and Codes, OS/390, VSE/ESA, P39-5004 provides
more information on error messages.

FSE

Description Optional. Displays online help for the Full Screen Editor.

HELP

MANTIS Language 273

HELP

Description Optional. Displays online help for the Help Facility.

General considerations

♦ If you are using the Full Screen Editor, the default PF key setting for
the HELP command is PF1. Refer to MANTIS Program Design and
Editing, OS/390, VSE/ESA, P39-5013, for details on changing this
assignment.

♦ If no HELP exists, you get an error message.
Examples The following examples show how to use the HELP function to display

online help for various topics:

Example Comments
HELP Displays a prompter explaining the last MANTIS

message received. If there is no message, a
NUCCNHE:Cannot find the specified prompter
message is issued.

HELP CONVERSE Displays a prompter providing a more detailed
explanation of the MANTIS command or
statement (for example, CONVERSE). For
more information, see the table in “MANTIS
language summary” on page 76. A prompter is
available for most of the commands and
statements listed there.

HELP RESERVED Displays all MANTIS reserved words. For a list
of MANTIS reserved words, see the table in
“Symbolic names” on page 24.

HELP CODE_NUCLSI Displays an explanation of the error that you
designate using the six-character ID. An
example of the six-character ID is “NUCLSI”.

HELP HELP Displays a list of commands for which help is
available.

HELP FSE Displays online help information for the Full
Screen Editor.

HELP (In screen design.) Displays a help prompter for
PF keys and for Screen Design line commands.
For details, refer to MANTIS Facilities, OS/390,
VSE/ESA, P39-5001.

Chapter 3 MANTIS programming language

274 P39-5002-00

IF-ELSE-END
The IF-ELSE-END statement executes a block of statements only if a
specified condition (or conditions) is true.

IF
 .
ELSE
 .

 END

expression
blocka

blockb
�

��
�

��

expression

Description Required. Specifies the condition necessary for MANTIS to execute
blocka.

Format Relational or arithmetic expression that evaluates to TRUE (nonzero) or
FALSE (zero)

Consideration When you use a unary sign as part of the expression following a
relational or numeric operator, you must enclose the expression in
parentheses; for example, IF ALPHA=(-RESULT). See “Arithmetic
expressions” on page 45.

blocka

Description Optional. Contains zero or more statements that you want to execute
only if expression is TRUE.

IF-ELSE-END

MANTIS Language 275

blockb

Description Optional. Contains zero or more statements that you want to execute if
the expression is FALSE.

General considerations

♦ Each of the statements IF, ELSE, and END must appear on a line by
itself. Only a comment (separated by a colon) can follow the IF
expression.

♦ If the expression is TRUE (non-zero), MANTIS executes the
statements in blocka and resumes at the statement following END.

♦ If the expression is FALSE (zero), and an ELSE clause is not
present, MANTIS ignores blocka and resumes at the statement
following END.

♦ If the expression is FALSE (zero), and an ELSE clause is present,
MANTIS executes the statements in blockb and resumes at the
statement following END.

♦ See also “FOR-END” on page 226, “UNTIL-END” on page 478,
“WHEN-END” on page 508, and “WHILE-END” on page 510.

Chapter 3 MANTIS programming language

276 P39-5002-00

Example The following example shows how the IF-ELSE-END statements can be
used to test for a specific value:
000110 .WHILE MAP<>"CANCEL"

000110 ..GET REC(CUST_NUMBER)EQUAL

000120 ..IF REC="FOUND"

000130 ...MESSAGE="'PF1' TO UPDATE 'PF3' TO CANCEL"

000140 ...CONVERSE MAP

000150 ...WHEN MAP="PF1"

000160UPDATE REC

000170MSG="UPDATE COMPLETE"

000180 ...WHEN MAP="PF3"

000190MSG="MAINTENANCE CANCELLED AT USER'S REQUEST"

000200 ...END

000210 ..ELSE

000220 ...MSG="CUSTOMER NOT FOUND"

000230 ..END

000240 ..CLEAR MAP

000250 ..MESSAGE=MSG

000260 ..CONVERSE MAP

000270 .END

.

.

.

INSERT

MANTIS Language 277

INSERT
The INSERT statement inserts a new record into an external file, a
MANTIS file, a personal computer file, an RDM logical view, or a TOTAL
DBMS view.

INSERT (External file)

INSERT file-name[LEVEL=n]

file-name

Description Required. Specifies the name (as defined in a previously executed
ACCESS statement) of an existing external file where you want to insert
a record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to insert.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1 through m,
where m is the maximum buffer number, as defined in the corresponding
ACCESS statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

Chapter 3 MANTIS programming language

278 P39-5002-00

General considerations
♦ An external file open (when required) is issued on the first DELETE,

GET, INSERT, or UPDATE.

♦ For INDEXED files, the contents of key data elements identify the
record to be inserted.

♦ For SEQUENTIAL files, MANTIS inserts the record at the end of the
file and returns the Relative Byte Address (RBA) of the inserted
record in the associated reference variable.

♦ For NUMBERED files, the Relative Record Number (RRN) contained
in the corresponding reference variable identifies the record to be
inserted.

♦ MANTIS returns a text string in the variable called access-name that
reflects the status of the operation:

Returned text string Description
“” The insert was successful.
“LOCK” * The password specified in the ACCESS

statement for this file view is not valid for
deletions or insertions.

“ERROR” * MANTIS received an error status. Use the
FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during record

insertion.
♦ The file was full.
♦ For INDEXED and NUMBERED files,

the record to be inserted already
exists.

♦ The External file exit canceled the
operation.

“NOTOPEN” * The external file is not open.

* Returned only when TRAP is in effect for the file.

INSERT

MANTIS Language 279

♦ For extended external file status messages and Function Status
Indicators (FSIs), see “Extended status messages for MANTIS and
external files” on page 521.

♦ This statement can be affected by the External File Exit. See your
Master User for details.

♦ See also “DELETE” on page 183, “FSI” on page 232, “GET” on
page 234, and “UPDATE” on page 479.

Fields that are not defined on the File View Design facility are added with
spaces. This may produce incorrect results when the missing fields are
defined as numeric in other programs. Simply defining the field as the
proper datatype and not referencing it will set the field to zero (see
“Automatic mapping” on page 33).

Example In the following example, showing how an EXTERNAL FILE INSERT is
coded, the first INSERT statement opens the file:
00020 .ACCESS RECORD("INDEX","SERENDIPITY",16)

00030 .SCREEN MAP("INDEX")

00040 .CONVERSE MAP

00050 .COUNTER=1

00060 .WHILE MAP<>"CANCEL" AND COUNTER<17

00070 ..WHEN INDICATOR(COUNTER)="G"

00080 ...GET RECORD LEVEL=COUNTER

00090 ..WHEN INDICATOR(COUNTER)="D"

00100 ...DELETE RECORD LEVEL=COUNTER

00110 ..WHEN INDICATOR(COUNTER)="I"

00120 ...INSERT RECORD LEVEL=COUNTER

00130 ..END

Chapter 3 MANTIS programming language

280 P39-5002-00

INSERT (MANTIS file)

INSERT file-name[LEVEL=n]

file-name

Description Required. Specifies the name (as defined in a previously executed FILE
statement) of an existing file where you want to insert a record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to insert.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1 through m,
where m is the maximum buffer number, as defined in the corresponding
FILE statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

INSERT

MANTIS Language 281

General considerations

♦ You must execute a corresponding FILE statement before the
INSERT statement, using the valid INSERT/DELETE password.

♦ The Setpray Exit can affect this statement. See your Master User for
details.

♦ MANTIS returns a text string in the variable called file-name that
reflects the status of the operation:

Returned text string Description
“” The insert was successful.
“LOCK” * The password specified in the FILE

statement for this file view is not valid for
deletions or insertions.

“ERROR” * MANTIS received an error status. Use the
FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during record

insertion.
♦ The file was full.
♦ The record to be inserted already

exists.
♦ SETPRAY Exit canceled the operation.

“DATA” * A data conversion error occurred while
inserting the record.

* Returned only when TRAP is in effect for the file.

♦ For extended MANTIS file status messages and Function Status
Indicators (FSIs), see “Extended status messages for MANTIS and
external files” on page 521.

♦ See also “DELETE” on page 183, “FSI” on page 232, “GET” on
page 234, and “UPDATE” on page 479.

Chapter 3 MANTIS programming language

282 P39-5002-00

Example The following example shows how a record is inserted in an internal file
after the corresponding FILE statement:
00010 ENTRY INDEX

00020 .FILE RECORD("INDEX","SERENDIPITY")

00030 .SCREEN MAP("INDEX")

00040 .GET RECORD

00050 .WHILE RECORD<>"END" AND MAP<>"CANCEL"

00060 ..CONVERSE MAP

00070 ..WHEN MAP="PF1"

00080 ...INSERT RECORD

00090 ..WHEN MAP="PF2"

00120 ...UPDATE RECORD

00130 ..END

00140 ..GET RECORD

00150 .END

00170 EXIT

INSERT

MANTIS Language 283

INSERT (Personal computer file)

INSERT file-name[LEVEL=n]

file-name

Description Required. Specifies the name (as defined in a previously executed
ACCESS statement) of an existing file that you want to insert.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to insert.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1 through m,
where m is the maximum buffer number, as defined in the corresponding
ACCESS statement

Consideration

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

General considerations

♦ For SEQUENTIAL files, MANTIS inserts the record at the end of the
file. Because the Relative Byte Address is unavailable for inserts, the
referenced variable is set to 0. MANTIS returns the RBA in the
reference variable if the insert was successful.

♦ For NUMBERED files, the Relative Record Number (RRN) contained
in the corresponding reference variable identifies the record to be
inserted.

♦ A good way to initialize PC NUMBERED files is to insert a record with
the highest RRN to be used. PC CONTACT initializes all records
with lower Relative Record Numbers to binary zeros.

Chapter 3 MANTIS programming language

284 P39-5002-00

♦ MANTIS returns a text string in the variable called access-name that
reflects the status of the operation:

Returned text string Description
“” The insert was successful.
“LOCK” * The password specified in the ACCESS

statement for this file view is not valid for
deletions or insertions.

“ERROR” * MANTIS received an error status. Use the
FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during record

insertion.
♦ The disk is full.

“DATA” * A data conversion error occurred while
inserting the record.

* Returned only when TRAP is in effect for the file.

♦ For extended personal computer file status messages and Function
Status Indicators (FSIs), see “Extended status messages for
MANTIS and external files” on page 521.

♦ With TRAP name OFF, an INSERT error results in a fault message.
The fault message text contains the PC file name and the file status.
If a data conversion error occurs, the fault message also contains the
refer value for numbered files and the name of the field for which the
data error occurred.

♦ With TRAP name ON, a fault does not occur. The file symbolic
name contains the file status and the FSI built-in function can be
used to obtain the fault message information.

♦ If you insert a new record where a record already exists, the new
record replaces the existing record and the existing record is lost.

♦ Files residing on a personal computer can only be accessed by that
personal computer user.

♦ If the data file where you want to insert records has not been
previously defined, PC CONTACT creates the file when you perform
your first insertion.

INSERT

MANTIS Language 285

♦ For PC files, MANTIS uses buffering for GET NEXTs and INSERTs
to increase the speed of uploads and downloads.

 A common download program reads records from a mainframe file
and issues many INSERTs against a PC file. These INSERTs are
not sent to the PC until the buffer fills or some other event forces the
sending of the buffer.

♦ The following events cause MANTIS to send the insert buffer to the
PC. Avoiding them can improve performance and take full
advantage of INSERT buffering.

- Task termination.

- Program termination.

- EXIT from an externally done program containing the ACCESS
statement for the PC (a special case of program termination).

- COMMIT.

- Screen I/O.

- Perform of an external interface.

- Change of I/O operation, such as changing from an INSERT to a
GET, UPDATE, or DELETE.

- Full buffer.

♦ Because of buffering, an INSERT error may not be detected until
some time after the MANTIS program issues it, such as on the next
CONVERSE. INSERT errors are trappable using the TRAP
statement only after COMMITs and INSERTs. Testing the file status
after a COMMIT determines if any of the inserts in the buffer sent to
the PC as a result of the COMMIT failed. Testing the file status after
an INSERT determines if any of the INSERTs in the buffer sent to the
PC as a result of a full buffer condition failed. If the buffer has not yet
been sent to the PC, the file status after an INSERT always indicates
that it was successful. Only the INSERT that fills the buffer returns
an error status.

Chapter 3 MANTIS programming language

286 P39-5002-00

♦ When INSERT buffering is in progress for more than one PC file,
there is one INSERT buffer for each ACCESS. With the exception of
a change of I/O operation and a full buffer, any event that causes an
INSERT buffer to be sent to the PC, sends all INSERT buffers to the
PC. The order in which the INSERT buffers are sent to the PC is not
predictable. If an error occurs for an INSERT in one of the buffers,
only examination of the PC files can determine which of the INSERTs
from the other buffers actually succeeded.

♦ Because mainframe resources are recoverable using
ROLLBACK/COMMIT, and PC resources are not, error situations can
cause unsynchronized data to occur. Design your applications to
rebuild PC files to preserve data integrity.

♦ When subsequent ACCESSes to a given PC file are encountered, all
buffering is disabled for all ACCESSes to that PC at all DO levels to
preserve data integrity.

♦ See also “DELETE” on page 183, “FSI” on page 232, “GET” on
page 234, and “UPDATE” on page 479.

Example The following example shows how a personal computer file is inserted:
00010 ENTRY PC_EXAMPLE

00020 .VIEW V_REC("SAMPLE_VIEW")

00030 .ACCESS PC_REC("SAMPLE_PC_ONE","REMOVE")

00040 .GET V_REC

00050 .WHILE V_REC<>"END"

00060 ..INSERT PC_REC

00070 ..GET V_REC

00080 .END

00090 .SHOW "FILE TRANSFER COMPLETE":WAIT

00100 EXIT

INSERT

MANTIS Language 287

INSERT (RDM logical view)

[]INSERT

NEXT
PRIOR
FIRST
LAST

 LEVEL =view - name n

�

�

	
	
	

�

�
�
�

view-name

Description Required. Specifies the name (as defined in a previously executed VIEW
statement) of the logical view where you want to insert a record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

NEXT/PRIOR/FIRST/LAST

Description Optional. Specifies the location where the logical record is to be inserted
relative to the current positioning.

Format Must be coded exactly as shown

Default NEXT

Options NEXT Places the record in the logical view following the current record,
provided the keys are the same. If the keys are different or if the current
position has not been established, INSERT...NEXT operates as
INSERT...LAST.

 PRIOR Places the record in the logical view before the current record,
provided the keys are the same. If the keys are different or if no current
record has been established, INSERT...PRIOR operates as
INSERT...FIRST.

 FIRST Places the record in the logical view so that subsequent
GET...FIRST commands using the same key values retrieves this record.

 LAST Places the record in the view so that a subsequent GET...LAST
command using the same key values retrieves this record.

Chapter 3 MANTIS programming language

288 P39-5002-00

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to insert.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1 through m,
where m is the maximum buffer number, as defined in the corresponding
VIEW statement

Considerations

♦ Only specify LEVEL=n when the view-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

General considerations

♦ If you don’t read a record before inserting, then RDM inserts relative
to the current record position.

♦ You must execute a corresponding VIEW statement before you can
execute the INSERT statement.

♦ MANTIS returns a text string in the variable called view-name that
reflects the status of the operation:

Returned text string Description
“” The insert was successful.
“DUPLICATE” * A record with the same key already exists.
“ERROR” * MANTIS received an error status. Use the

FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during

database access.
♦ You tried to perform an invalid function

on the user view.
“LOCK” * You do not have permission to insert

logical records in the logical view.

* Returned only when TRAP is in effect for the file.

INSERT

MANTIS Language 289

♦ RDM logical view INSERT sets three status functions to the
application program that indicate processing results—FSI, ASI, and
VSI. FSI indicates the success or failure of your command. ASI
indicates the status of each field in the logical record. VSI indicates
the highest field status within the logical record. For a complete
discussion of these status functions, see “Status functions” on
page 517.

♦ If the logical record to be inserted is uniquely keyed, and if the value
of the keys to be inserted already exists in the database, the insert
fails. If TRAP is ON, MANTIS returns “DUPLICATE”; otherwise,
MANTIS displays an error message and halts execution.

♦ If your DBA specified ordering in the logical view definition or if the
physical DBMS does not allow program control of ordering, MANTIS
ignores the specification on the INSERT statement.

♦ If TRAP is OFF for this logical view and MANTIS receives a failure
status from RDM logical view, MANTIS issues a RESET to ensure
database integrity. If TRAP is ON and “ERROR” is returned, and the
MANTIS program does not perform the RESET, then it is possible
that MANTIS did only part of the insert.

♦ Your DBA can disallow insertions. If so, MANTIS returns the “LOCK”
status if TRAP is in effect. If TRAP is not in effect, MANTIS displays
a message and halts execution.

♦ If you have issued an INSERT since the last terminal I/O, MANTIS
automatically issues a COMMIT prior to any further terminal I/O.

♦ See also “ASI” on page 93, “DELETE” on page 183, “FSI” on
page 232, “GET” on page 234, “UPDATE” on page 479, and “VSI” on
page 505.

Chapter 3 MANTIS programming language

290 P39-5002-00

Example The following example shows how an RDM LOGICAL VIEW INSERT is
coded:
00010 VIEW CUSTOMER("CUST")

00020 SCREEN MAP("CUST_UPDATE")

00030 SHOW"ENTER CUSTOMER NUMBER:"

00040 OBTAIN CUST_NO

00050 GET CUSTOMER(CUST_NO)

00060 IF CUSTOMER<>"FOUND"

00070 .INPUT_OK=FALSE

00080 .UNTIL INPUT_OK

00090 ..CONVERSE MAP

00100 ..DO EDIT_INPUT

00110 ..WHEN EDIT_OK

00120 ...INPUT_OK=TRUE

00130 ..END

00140 .END

00150 .INSERT CUSTOMER

00160 .SHOW"CUSTOMER INFORMATION INSERTED"

00170 ELSE

00180 .SHOW"CUSTOMER ALREADY EXISTS"

00190 END

INSERT

MANTIS Language 291

INSERT (TOTAL file view)

[]n=LEVEL

AFTER

 BEFORE

LAST

FIRST

 name-file INSERT

�
�
�
�

�

�

�
�
�
�

�

�

refer

refer

file-name

Description Required. Specifies the name (as defined in a previously executed
TOTAL statement) of a TOTAL file view into which you want to insert a
record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to insert.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1 through m,
where m is the maximum buffer number, as defined in the corresponding
TOTAL statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

Chapter 3 MANTIS programming language

292 P39-5002-00

FIRST/LAST/BEFORE refer/AFTER refer

Description Optional. Specifies the location where the logical record is to be inserted
relative to the current positioning.

Default LAST

Options FIRST Inserts the record at the beginning of the set.

LAST Inserts the record at the end of the set.

BEFORE refer Inserts the record prior to the one specified by refer.

AFTER refer Inserts the record after the one specified by refer.

Consideration Applicable to variable-entry files only.

INSERT

MANTIS Language 293

refer

Description Optional. Identifies the position in the file where MANTIS inserts the
record.

Format 4-character text expression that must be coded exactly as shown

Consideration You can save and restore a refer using a text variable of at least four
characters in length. The refer is always held in the Reference Variable
name found on the TOTAL File View Design Facility menu. For more
details, refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001.

General considerations

♦ You must execute a corresponding TOTAL statement before you can
execute the INSERT statement.

♦ A TOTAL file open is issued on the first DELETE, GET, INSERT, or
UPDATE.

♦ MANTIS returns a text string in the variable called file-name that
reflects the status of the operation:

Returned text string Description
“” The insert was successful.
“DUPLICATE” * A record with the same key already exists.
“LOCK” * The password specified in the TOTAL

statement is invalid.
“NOTFOUND” * The variable-entry chain set with the

requested key does not exist.
“NOTOPEN” * The TOTAL view is not open.
“NOTAVAL” * The TOTAL file or view is not open.

* Returned only when TRAP is in effect for the file.

♦ See also “DELETE” on page 183, “GET” on page 234, and
“UPDATE” on page 479.

Example The following example shows how a TOTAL INSERT is coded with the
corresponding TOTAL statement preceding the INSERT statement:
00020 TOTAL BILL("BOM","ASSEMBLY",8)

.

00100 INSERT BILL BEFORE BILL_REFER(BUFFER-1)LEVEL=BUFFER

Chapter 3 MANTIS programming language

294 P39-5002-00

INT
The INT function returns the integer value of a where a is any arithmetic
expression.

INT(a)

a

Description Required. Specifies any valid arithmetic expression.

General consideration

 See also the ROUNDED parameter under “LET (Numeric (BIG/SMALL)
variables)” on page 308.

Examples The following examples show how the INT function returns the integer
portion of arithmetic expressions.

Example Results Comments
INT(45) 45
INT(45.5) 45
INT(-45.5) -45
INT(-.5) 0

INTERFACE

MANTIS Language 295

INTERFACE
The INTERFACE statement specifies an interface that your program
accesses.

INTERFACE

name1([library1:]interface-name1,password1[,PREFIX][,n1])

[,name2([library2:]interface-name2,password2[,PREFIX][,n2])...]

name

Description Required. Specifies the name used to refer to the interface in
subsequent CALL statements.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Consideration When the symbolic name is previously defined, MANTIS bypasses this
definition.

[library:]interface-name

Description Required. Specifies the name of the interface profile as you saved it
during interface design.

Format 1–33 character text expression that evaluates to a valid interface name

Considerations

♦ If the interface is in another user’s library, you can access it by
specifying the name of the user, followed by a colon and the interface
name, as follows:

 [library:]interface-name

♦ If this parameter is used, the colon (:) is required.

♦ If the interface resides in your library, you can specify only the
interface name.

♦ If you want this entity to be HPO bound, the library name is required
even if it is your own library.

♦ This parameter is translated to uppercase upon execution of your
program.

Chapter 3 MANTIS programming language

296 P39-5002-00

password

Description Required. Specifies the password valid for the interface profile.

Format 1–16 character text expression

PREFIX

Description Optional. Specifies whether MANTIS places the symbolic name and an
underscore before all field names associated with this interface. See the
FILE statement for a full explanation of prefixing.

Format Must be coded exactly as shown

n

Description Optional. Specifies how many buffers MANTIS should allocate to this
interface.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1–254

Considerations

♦ MANTIS uses only the integer portion of n.

♦ When you use the n parameter to indicate buffering, add the
LEVEL=n option to the CALL statement.

INTERFACE

MANTIS Language 297

General considerations

♦ Consult your Master User before using the INTERFACE statement.

♦ MANTIS translates the design names on the INTERFACE statement
(library and interface-name) to uppercase upon execution of your
program. MANTIS does not translate password to uppercase.

♦ See also “CALL” on page 137.

Example The following example shows an INTERFACE statement accessing an
interface within a program:
00020 INTERFACE MASTER("CUSTOMERS","ALIBABA",10)

00030 SCREEN MAP("CUSTOMERS")

00040 WHILE MAP<>"CANCEL"

00050 .CONVERSE MAP

00060 .CALL MASTER("GET",keyfield) LEVEL=2

00070 END

Chapter 3 MANTIS programming language

298 P39-5002-00

KANJI (Kanji users only)
The Kanji statement names and specifies dimensions for DBCS (Double
Byte Character Set) variables and arrays.

KANJI name1[([n1,] length1)]

 [,name2[([n2,] length2)] . . .]

name

Description Required. Specifies the name of the KANJI (DBCS) variable.

Consideration When the symbolic name is previously defined, MANTIS bypasses this
definition.

n

Description Optional. Specifies the number of elements in a DBCS array.

Format Arithmetic expression that evaluates to a value in the range 1–255

Considerations

♦ MANTIS rounds n to an integer value.

♦ If not specified, name1 is a KANJI scalar.

KANJI (Kanji users only)

MANTIS Language 299

length

Description Optional. Specifies the maximum length (in characters) of each KANJI
element. The BYTE length will be twice n.

Format Arithmetic expression that evaluates to a value in the range 1–127

Default 8

Consideration MANTIS rounds length to an integer value.

General considerations

♦ A KANJI variable contains a zero-length string (K“”) upon initial
definition.

♦ MANTIS accepts only as many characters in a KANJI variable as you
specify in the KANJI statement.

♦ The following MANTIS statements allow KANJI literals and variables
to be specified as parameters:

CALL HEAD POINT
DEQUEUE SHOW
ENQUEUE LET SIZE
GET

♦ The following MANTIS statements allow KANJI variables, but not
KANJI literals, to be specified as parameters:

CHAIN ENTRY-EXIT DO OBTAIN

♦ See also “BIG” on page 134, “DBCS (Statement)(Kanji users only)”
on page 181, “MIXD” on page 327, “MIXM” on page 328,
“MIXMODE” on page 329, “MIXT” on page 331, “SMALL” on
page 415, and “TEXT” on page 457.

Chapter 3 MANTIS programming language

300 P39-5002-00

Example The following example shows how a Kanji statement names and
specifies dimensions for DBCS variables:

In this example, < indicates SO or Shift-out, > indicates SI or Shift-in.

00010 KANJI FIELDK(5),ARRAYK(3,20)

00020 FIELDK=K" %% ":ARRAYK(1)=K" %%%% ":ARRAYK(2)=G "<%%%%>"

00030 SCREEN MAP("KANJI_MAP","PSW")

00040 WHILE MAP<>"CANCEL"

00050

00060

00070

.

.

.

KEY

MANTIS Language 301

KEY
The KEY function returns a text string that identifies the key you pressed
in response to a CONVERSE, OBTAIN, PROMPT, or WAIT statement.

KEY

General considerations

♦ Possible KEY values are:

- “PF1” through “PF24”

- “PA1”

- “PA2” (only if your Master User has assigned an alternate
CANCEL key)

- “CANCEL” (equal to PA2 or another installation-specified key)

- “CLEAR”

- “ENTER”

- “PEN”

♦ Use KEY for identifying the key pressed on an unformatted screen.

♦ The following explain dependencies of KEY and CLEAR:

- The CLEAR mapname statement sets the value of the mapname
variable to an empty string (“”), but does not affect the KEY
function.

- The CLEAR statement, without a mapname, does not affect the
value of any mapname variable, but sets KEY to “CLEAR”.

- Pressing the CLEAR key on the terminal sets KEY to “CLEAR”.

Chapter 3 MANTIS programming language

302 P39-5002-00

♦ KEY represents the physical key pressed, and is not affected by entry
into the key simulation field.

CANCEL is normally returned to the MANTIS program when the PA2
key is pressed, but your Master User can change this.

♦ See also “CLEAR” on page 145, “CONVERSE” on page 157,
“OBTAIN” on page 341, “PROMPT” on page 376, and “WAIT” on
page 506.

Example The following example shows how the KEY function can be used to test
for a user response on the keyboard:
00010 DO INITIALIZATION

00020 HEAD"DISPLAY EMPLOYEE"

00030 CLEAR

00040 SHOW"ENTER EMPLOYEE NUMBER : (ENTER/CANCEL)"

00050 OBTAIN EMPLOYEE_NUMBER

00060 WHILE KEY<>"CANCEL"

00070

00080

.

.

.

Example Results Comments
KEY "PF12"
KEY(1,2) "PF" Substringing permitted.
KEY "CANCEL" May be installation-

defined. See your
Master User.

CLEAR mapname

KEY "ENTER"
CLEAR mapname
does not affect KEY
value.

CLEAR

KEY "CLEAR"
CLEAR without a
mapname sets KEY
value to “CLEAR”.

KILL

MANTIS Language 303

KILL
The KILL command terminates a program listing (line editor), a program
currently paused, or a program in a loop. Whenever a program pauses
by executing a WAIT, OBTAIN, PROMPT, or CONVERSE statement, or
MANTIS has just issued the message “POTENTIAL PROGRAM LOOP
ENCOUNTERED”, you can stop program execution by entering KILL.

KILL

General considerations

♦ Use the TAB key to place the cursor in the correct position on the
bottom line (as shown in the examples below).

- Unformatted screen: bottom-left (unsolicited input field) or
bottom-right (key simulation field)

- Formatted screen: (converse) key simulation field

♦ You can reexecute your program by issuing the RUN statement if you
are in programming mode.

♦ Your Master User can change or disable the keyword KILL.

♦ KILL cannot be used if the screen has a Protect Bottom Line or Full
Display attribute.

♦ See also “CONVERSE” on page 157 and “OBTAIN” on page 341.

Chapter 3 MANTIS programming language

304 P39-5002-00

Examples

KILL

KILL

Unformatted Screen (OBTAIN, PROMPT, SHOW, WAIT)

Formatted Screen (CONVERSE)

LANGUAGE (Function)

MANTIS Language 305

LANGUAGE (Function)
The LANGUAGE function returns the current language setting.

LANGUAGE

Example

When the current language code is “ENU” (US English). For a complete
list of language codes, see the table in the following section.

Example Results Comments
LANGUAGE "ENU"
LANGUAGE(1,2) "EN" Substringing permitted.

Chapter 3 MANTIS programming language

306 P39-5002-00

LANGUAGE (Statement)
The LANGUAGE statement assigns a language code to the current task.
The language code determines which messages, facility screens and
help prompters are displayed on the terminal.

LANGUAGE=t

t

Description Required. Specifies a text expression identifying the language code to be
used.

Format An expression evaluating to 0 or 3 characters

Options The following table contains the MANTIS language codes:

Code Language Code Language
AFR Afrikaans ELL Greek
ARA Arabic ENA Australian English
BEL Byelorussian ENG UK English
BGR Bulgarian ENP US English (uppercase)
CAT Catalan ENU US English (upper/lower

case)
CHT Traditional Chinese ESL Spanish Latin American
CHS Simplified Chinese ESP Spanish
CSY Czech FIN Finnish
DAN Danish FRA French
DEU German FRB Belgian French
DES Swiss German FRC Canadian French

LANGUAGE (Statement)

MANTIS Language 307

Code Language Code Language
FRS Swiss French RMS Rhaeto-Romanic
GAE Irish Gaelic ROM Romanian
HEB Hebrew RUS Russian
HRV Croatian SKY Slovakian
HUN Hungarian SLO Slovenian
ISL Icelandic SQI Albanian
ITA Italian SRB Serbian (Cyrillic)
ITS Swiss Italian SRL Serbian (Latin)
JPN Japanese SVE Swedish
KOR Korean THA Thai
MKD Macedonian TRK Turkish
NLD Dutch UKR Ukrainian
NLB Belgian Dutch URD Urdu
NON Norwegian Nynorsk U01 User-defined 1
NOR Norwegian Bokmal U02 User-defined 2
PLK Polish U03 User-defined 3
PTB Brazilian Portuguese U04 User-defined 4
PTG Portuguese

General consideration

When the value, t, is NULL (0 characters), MANTIS uses the language
specification on the user profile. If the user profile does not contain a
language code, the installation default is used (see your Master User for
this value).

Examples

♦ The following example sets the language code to JPN (Japanese):
LANGUAGE="JPN"

♦ The following example sets the language code back to the user’s
profile language code, or installation default if the user does not have
a language code defined:
LANGUAGE=""

Chapter 3 MANTIS programming language

308 P39-5002-00

LET (Numeric (BIG/SMALL) variables)
The LET statement assigns a value to a variable (or variables) or an
array (or arrays). MANTIS evaluates the expression and sets the
variable or array equal to that value.

[LET] ()
(,) [ROUNDED()] = [, , . . .]v i
i j n e1 e2 e3�

�	

��

LET

Description Optional. Identifies the statement. When “LET” is omitted, the statement
begins with the symbolic name, v.

v

Description Required. Specifies a variable or a subscripted array element.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Consideration If you have not provided an explicit definition of the variable, v, MANTIS
assigns a BIG type.

i

Description Optional. Indicates the occurrence of the named variable within the
array. Required if v is a 1-dimensional array.

Consideration MANTIS rounds i to the nearest integer.

i,j

Description Optional. Indicates the occurrence of the named variable within the
matrix. Required if v is a 2-dimensional array.

Consideration MANTIS rounds i,j to the nearest integer.

LET (Numeric (BIG/SMALL) variables)

MANTIS Language 309

ROUNDED(n)

Description Optional. Specifies the number of decimal digits (n) to which you want
the number carried out during the calculation (and before the number is
assigned to a variable).

Format Integer from 0–6, inclusive

Considerations

♦ Used when performing calculations whose results are real numbers.

♦ If ROUNDED is not used, two variables that seem to be equal (when
displayed by SHOW statements) can actually compare unequal due
to internal floating-point representation.

♦ Use the ROUNDED option when you want to control fractional
results; for example, in currency calculations.

♦ See also “INT” on page 294.

Chapter 3 MANTIS programming language

310 P39-5002-00

e1 [,e2,e3...]

Description Required. Specifies an expression to be evaluated. MANTIS assigns
that value to the variable or array element on the left of the equal sign.

Format Arithmetic expression

Consideration If you code more than one expression, an array element must also be
coded on the left of the equal sign. MANTIS assigns values to sequential
ascending elements of the array beginning with the element specified by
v in row major order (see BIG and SMALL in “Numeric data” on
page 41).

General consideration

You may also use the CLEAR v statement to set all elements of the
variable v to zero.

LET (Numeric (BIG/SMALL) variables)

MANTIS Language 311

Examples

In the following examples, assume newly-defined variables:
10 BIG A,B(3),C(4,2)

Example Results Comments
A=10 10
A=.1E3 100 MANTIS E-notation.
A ROUNDED(2)=PI 3.14
A = ("XXX"="YYY") 0 Value of expression is

FALSE (0).
B(1)=10 10 Other elements remain

0.
B(1)=10,20,30 B(1)=10

B(2)=20

B(3)=30

C(2,2)=3 C(2,2)=3 Other elements remain
unchanged.

C(1,1)=0,1,2,3,4,5,6,7 C(1,1)=0

C(1,2)=1

C(2,1)=2

C(2,2)=3

C(3,1)=4

C(3,2)=5

C(4,1)=6

C(4,2)=7

Row major order.

A=1/2 0.5
A=A+1 1 Initially, A=0.
CLEAR B B(1)=0

B(2)=0

B(3)=0

Chapter 3 MANTIS programming language

312 P39-5002-00

LET (TEXT/KANJI/DBCS variables)

[LET]
()
(,)
(, ,)

 = [, , . . .]v
x
x y
i x y

e1 e2 e3
�

�

�
�

�

�

�
�

v

Description Required. Specifies a variable or a subscripted array element.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

x

Description Optional. Indicates the starting position for the named variable on the
left-hand side of the expression to receive data from the right-hand side
of the expression.

Format Numeric expression between 1 and the maximum size specified for the
variable, v (inclusive), or between the opposite of the current size and -1,
for negative subscripting

Considerations

♦ Used with text and DBCS data.

♦ MANTIS rounds x to an integer value.

♦ If x is greater than the current length, MANTIS pads the variable, v,
with blanks up to and including position x-1.

LET (TEXT/KANJI/DBCS variables)

MANTIS Language 313

y

Description Optional. Indicates the last position for the named variable on the left-
hand side of the expression to receive data from the right-hand side of
the expression.

Format A numeric expression between 1 and the maximum size specified for the
variable , v (inclusive). Or, for negative subscripting, a numeric
expression between the opposite of the current size of v and -1. y must
be greater than or equal to x; for example, the (x,y) pairs (1,4) and (-4,-1)
are valid.

Considerations

♦ Used with text and DBCS data.

♦ MANTIS rounds y to an integer value.

♦ The value of the second subscript (y) does not normally affect the
resulting current size of the variable on the left-hand side, v, except
where y is greater than the previous current length. In this case,
MANTIS changes the current length to the value of y. Using two
negative subscripts does not affect the resulting current size of the
variable.

i

Description Optional. Indicates the occurrence of the element within the TEXT array;
for example, TEXT B(5,8), B(3) identifies the third element of the array.
Used only for TEXT arrays, where it is required.

Consideration MANTIS rounds i to an integer value.

Chapter 3 MANTIS programming language

314 P39-5002-00

e1 [,e2,e3...]

Description Required. Specifies an expression or expressions to be evaluated.
MANTIS assigns the value of the expression to the variable or array
element on the left of the equal sign.

Format Valid text or DBCS expression

Consideration If you code more than one expression, an array element must also be
coded on the left of the equal sign. MANTIS assigns values to sequential
ascending elements of the array, beginning with the element specified by
v, in order.

For example:
TEXT X(10,2),X (1)= "AA","BB","CC","DD","EE","FF"

is equivalent to:
X (1) ="AA"

X (2) ="BB"

X (3) ="CC"

X (4) ="DD"

X (5) ="EE"

X (6) ="FF"

LET (TEXT/KANJI/DBCS variables)

MANTIS Language 315

General considerations

♦ You may use CLEAR to set all elements of the variable v to a zero-
length string (NULL or “”). You may also use the PAD and UNPAD
statements to add or remove multiple characters from either end of a
string or substring.

♦ If you specify no subscripting (apart from the array occurrence), the
current length of the variable on the left-hand side (LHS) of the
expression is determined by the size of the string on the right-hand
side (RHS) of the expression, up to the specified maximum of the
variable (as shown in the example below). That is, the right-hand
side is truncated to the maximum length of the receiving variable (in
this case, 10):
TEXT A(10)

A=RHS

♦ In this case, the starting substring subscript (x) is supplied, but the
ending substring subscript (y) is not supplied. See the following
example:
A(X)=RHS

 The expression value on the right-hand side (RHS) is inserted,
starting from position x (if x is positive) or currentlength+x (if x is
negative), until either the last character of RHS is inserted or the
maximum size of the left-hand side (LHS) is reached.

 If x is positive and is greater than the currentlength+1, blanks are
inserted from position currentlength+1 to x-1.

 MANTIS may change the current length of LHS to represent the last
character added from RHS.

Chapter 3 MANTIS programming language

316 P39-5002-00

♦ In this case, x and y (the starting and ending substring subscripts)
are positive. See the following example:
A(X,Y)=RHS

The positions are relative from the beginning of the variable:

- y-x+1 characters are moved from RHS into position x of the LHS.
For example, A(3,4) receives two characters; A(3,3) receives one
character.

- If the RHS is shorter than y-x+1 characters, then the LHS is
padded with blanks through position y.

- If the RHS is longer or equal to y-x+1 characters, then y-x+1
characters are moved.

- If x > current length of the LHS, the LHS is padded with blanks
through position x-1; then MANTIS proceeds as above.

♦ In this case, x and y are negative. See the following example:
A(X,Y)=RHS

The positions are relative to the end of the variable's current length.
For the following examples, let A have a current length of 10.

- y-x+1 characters are moved from the RHS into position
currentlength+x+1 of the LHS. For example, A(-4,-2) will move 3
(that is, 3=(-2)-(-4)+1) characters into A, starting 4 characters
before the end (position 7).

- If the RHS is shorter than y-x+1 characters, then the LHS is
padded with blanks through position currentlength+y+1. For
example, if the current length of A is a 10, A(-4,-2)=“X” will move
“X” into position 7 and blanks into positions 8 and 9 (-3 and –2).

- If the RHS is longer than or equal to y-x+1 characters, then y-x+1
characters are moved. For example, A(-4,-2) will move 3
characters of the RHS, when the RHS is 3 or more characters
long.

LET (TEXT/KANJI/DBCS variables)

MANTIS Language 317

Examples In the following examples:

♦ Assume newly-defined variables:
10 TEXT VAR1(10),VAR2(5,20),VAR3(80)

Example Results Comments
VAR1="MORNING" "MORNING" Size=7
VAR1="GOOD MORNING" "GOOD MORNI" Size=10

(RHS
truncated)

VAR1="GOOD DAY"

VAR1=NULL

"GOOD DAY"

""
Size=8
Size=0

VAR1="GOOD DAY"

VAR1=VAR1(1,4)

"GOOD DAY"

"GOOD"
Size=8
Size=4

VAR1(1,8)="GOOD MORNING" "GOOD MOR" Size=8; LHS
limits
characters.

VAR1="GOOD MORNING"

VAR1(6,9)="LUCK"

"GOOD MORNI"

"GOOD LUCKI"
Size=10
Size=10

VAR1(6,10)="LUCK" " LUCK " Size=10;
blanks
inserted
from
positions 1
through 5,
and at
position 10.

VAR1="GOOD MORNING"

VAR1(6,10)="LUCK"

"GOOD MORNI"

"GOOD LUCK "
Size=10
Size=10;
pad blanks.

VAR1="GOOD MORNING"

VAR1(6,10)="LUCK"

VAR1(1,3)="BAD"

"GOOD MORNI"

"GOOD LUCK "

"BADD LUCK "

Size=10
3 char insert

VAR1="GOOD MORNING"

VAR1(6,10)="LUCK"

VAR1(1,4)="BAD"

"GOOD MORNI"

"GOOD LUCK "

"BAD LUCK "

Size=10
4 char insert

VAR1(1)="GOOD" "GOOD" Size=4

Chapter 3 MANTIS programming language

318 P39-5002-00

Example Results Comments
VAR1="AAAAAAAAAA"

VAR1(3)="BC"

"AAAAAAAAAA"

"AABC"
Size=10
Size=4

VAR1="AAAAAAAAAA"

VAR1(3,4)="BC"

"AAAAAAAAAA"

"AABCAAAAAA"
Size=10
Size=10

VAR1="GOOD"

VAR1(6,9)="LUCK"

VAR1(7,7)="0"

"GOOD"

"GOOD LUCK"

"GOOD LOCK"

Pad blank

VAR2(2)="GREAT EXPECTATIONS"

VAR2(2)=VAR(2)+"!!"

"GREAT EXPECTATIONS"

"GREAT EXPECTATIONS!!"
Size=18
Size=20

VAR2(2)="GREAT EXPERIENCE"

VAR2(2,7)="EXPECTATIONS"

"GREAT EXPERIENCE"

"GREAT EXPECTATIONS"
Size=16
Size=18

VAR2(1,4)="GOOD MORNING" " GOOD MORNING" Size=15
Pad 3 blanks

VAR2(1)="A","B","C","D","E" VAR2(1) is "A"

VAR2(2) is "B"

VAR2(3) is "C"

VAR2(4) is "D"

VAR2(5) is "E"

Size=1 for
each

VAR3="GOOD MORNING"

VAR3(-1)="'"

"GOOD MORNING"

"GOOD MORNIN'"

Last
character in
current
string.

VAR3="GOOD MORNING"

VAR3(-7,-5)="EVE"

"GOOD MORNING"

"GOOD EVENING"

Seventh-to-
last to fifth-
to-last
characters in
current
string.

LET (TEXT/KANJI/DBCS variables)

MANTIS Language 319

Example Results Comments
VAR3="GOOD MORNING"

VAR3(-7,-5)="E"

"GOOD MORNING"

"GOOD E NING"

Seventh-to-
last to fifth-
to-last
characters in
current
string. Short
RHS padded
with blanks.

VAR3="GOOD MORNING"

VAR3(-7,-5)="EVE****"

"GOOD MORNING"

"GOOD EVENING"

Seventh-to-
last to fifth-
to-last
characters in
current
string. Long
RHS
truncated to
three
characters.

VAR3="GOOD MORNING"

VAR3(-7)="EVENING"

VAR3(-7)="AFTERNOON"

"GOOD MORNING"

"GOOD EVENING"

"GOOD AFTERNOON"

Last 7
characters in
the string.

Chapter 3 MANTIS programming language

320 P39-5002-00

LOG
The LOG function returns the natural logarithm of a where a is any valid
arithmetic expression.

LOG(a)

a

Description Required. Specifies any valid, positive arithmetic expression.

General consideration

 See also “E” on page 210 and “EXP” on page 220.

Example The following examples show how the LOG function is used to return the
natural logarithm of an arithmetic expression:

Example Results Comments
LOG(1000) 6.90775528
LOG(245)/LOG(10) 2.38916608 Equivalent to Log10 245
LOG(PI**2) 2.28945977
LOG(0.5) -.693147181

LOWERCASE

MANTIS Language 321

LOWERCASE
The LOWERCASE function converts a text string into lowercase.

LOWERCASE(t)

t

Description Required. Specifies any valid text expression that you want to convert to
lowercase.

Format A text expression

General considerations

♦ The Customization TRCODE can affect this statement. See your
Master User for details.

♦ The translation table used depends upon the current LANGUAGE
setting.

♦ See also “Text considerations” on page 22, “Text data” on page 50,
and “UPPERCASE” on page 493.

Chapter 3 MANTIS programming language

322 P39-5002-00

Examples

Example Results Comments
LOWERCASE ("ABC") "abc"
LOWERCASE ("AbC %
123")

"abc % 123"

LOWERCASE ("ÁÉ") "áé" Depends on your
language setting and
translation table. See
your Master User.

♦ The following example shows how you can do a case insensitive

compare on two text fields, A and B:
TEXT A,B

IF LOWERCASE(A)=LOWERCASE(B)

…(block of code for comparison equal)

END

Lowercase translation can be modified by your System Administrator for
your native language.

LUID

MANTIS Language 323

LUID
The LUID function returns a text string of 8 characters containing the
VTAM logical unit ID (netname).

LUID

General Considerations

♦ The VTAM logical unit ID can be returned by the TERMINAL function
when TERMFUNC=VTAMID is specified in the C$OPCUST macro.
This function is available for those customers who had custom
patches applied in previous releases of Mantis to return the VTAM
logical unit ID (netname).

♦ The value returned by LUID varies depending on the operating
environment:

- For a physical terminal, this is the name by which this terminal is
known to VTAM.

- For ISC sessions, it is the name by which the session (or session
group, if there are parallel sessions) is known to VTAM.

- For MRO sessions, it is the name used by the connected region
to log on to the interregion communication program. For a
remote terminal, it is the name by which the terminal is known to
the VTAM in the remote region. (For a remote terminal routed
from a pre-CICS Transaction Server for OS/390 region,
NETNAME is blank.)

Example

Example Results Comments
LUID "NMMAI032" Sample LUID for CICS.
LUID "BACK$MAN" Background task.
LUID "DUMMY" Batch MANTIS.
LUID(1,2) "NM" Substringing OK.

Chapter 3 MANTIS programming language

324 P39-5002-00

MARK (SUPRA RDM users only)
The MARK statement obtains the current position of the logical view as
established by the last GET, UPDATE, or INSERT statements. Before
you can mark a view, you must open the view by processing the
associated VIEW statement.

MARK view-name AT mark-name [LEVEL=n]

view-name

Description Required. Specifies the name (as defined in a previously executed VIEW
statement) of the RDM logical view you want to access.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

AT mark-name

Description Required. Specifies a 4-character text variable where MANTIS saves the
MARK information.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Consideration The AT clause in the GET statement relocates the logical view at the
position set by the MARK statement.

MARK (SUPRA RDM users only)

MANTIS Language 325

LEVEL=n

Description Optional. Specifies the buffer number of the record that is marked.

Default 1

Format Arithmetic expression that evaluates to a value of 1 through m, where m
is the maximum buffer number, as defined in the corresponding VIEW
statement

Considerations

♦ Only specify LEVEL=n when the view-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

General considerations

♦ If you issue the RELEASE statement, MANTIS releases all MARKs,
and they are no longer valid.

♦ A MARK text variable contains internal information and must not be
used in a SHOW command, or defined in a file, screen, or TOTAL
view.

♦ You can control the number of outstanding MARKs in the following
manner:

- Reuse a prior MARK by executing the MARK statement with the
prior value in the mark-name variable. MANTIS ignores the prior
position and points previous variables to the new position.

- Allocate a new MARK (while saving previous MARKs) by setting
the mark-name variable to an empty string before executing the
MARK statement.

♦ See also “GET” on page 234, “RELEASE (Function)” on page 378
“RELEASE (Statement)” on page 380, and “VIEW” on page 501.

Chapter 3 MANTIS programming language

326 P39-5002-00

Example The following example shows how the MARK statement obtains the
current position of the logical view. Before you can mark a view, you
must open the file by processing the associated VIEW statement.
00010 VIEW CUSTOMER("CUSTOMER_ACCOUNTS")

00015 TEXT CUST_MARK(4)

00020 GET CUSTOMER("R14148")

00030 MARK CUSTOMER AT CUST_MARK

00040 SHOW CUSTOMER_NUMBER

00050 GET CUSTOMER("X00070")

00060 SHOW CUSTOMER_NUMBER

00070 GET CUSTOMER AT CUST_MARK

00080 SHOW CUSTOMER_NUMBER

MIXD

MANTIS Language 327

MIXD
The MIXD function extracts DBCS (Double Byte Character Set) data from
mixed-data.

MIXD(t)

t

Description Required. Specifies the text expression that can contain Shift-out and
Shift-in codes and DBCS data.

General considerations

♦ Using this function requires that the MIXMODE statement be set to
ON. (See the MIXMODE statement.)

♦ If the text expression contains no DBCS data, an empty string is
returned.

♦ See also “KANJI (Kanji users only)” on page 298, “MIXM” on
page 328, “MIXMODE” on page 329, and “MIXT” on page 331.

Example The following example shows how the MIXD function extracts DBCS data
from mixed-data:

In this example, < means SO (Shift-out) and > means SI (Shift-in).

00010 MIXMODE ON

00020 TEXT ALPHA(20)

00030 KANJI GAMMA(20)

00040 ALPHA="A< 1 >BC< 2 >"

Example Results Comments
MIXD(ALPHA) K"1 2" Extracts only DBCS

characters.

Chapter 3 MANTIS programming language

328 P39-5002-00

MIXM
The MIXM function converts a DBCS expression to a mixed-data text
string containing shift codes from DBCS data.

MIXM(t)

t

Description Required. Specifies the DBCS expression to be converted.

General considerations

♦ Using this function requires that the MIXMODE statement be set to
ON. (See the MIXMODE statement.)

♦ See also “KANJI (Kanji users only)” on page 298, “MIXD” on
page 327, and “MIXT” on page 331.

Example The following example shows how the MIXM function converts a DBCS
expression to a mixed-data text string containing shift codes from DBCS
data:

In this example < means SO (Shift-out) and > means SI (Shift-in).

00010 MIXMODE ON

00020 TEXT ALPHA(20)

00030 KANJI GAMMA(20)

00040 GAMMA=K" 1 2 "

Example Results Comments
MIXM(GAMMA) "< 1 2 >" Results in TEXT

expression containing
mixed text with Shift-
out/Shift-In.

MIXMODE

MANTIS Language 329

MIXMODE
The MIXMODE ON/OFF statement controls mixed-data. MIXMODE ON
sets programs in mixed-data mode. MIXMODE OFF sets programs in
non-mixed-data mode.

MIXMODE ON
OFF
�

��
�

��

ON

OFF

Description Optional. ON sets the program in Mix Data mode, and OFF sets the
program in non-Mix Data mode.

Default OFF

General considerations

♦ MIXMODE ON means MANTIS processes both SO (Shift-out) and SI
(Shift-in) in text variables. MIXMODE OFF means MANTIS does not
check for shift codes when processing text expressions.

You should not use MIXMODE ON if you are using TEXT variables to
hold arbitrary binary values.

♦ Optimum efficiency is obtained with MIXMODE OFF when the
program does not handle mixed-data. Do not specify MIXMODE ON
unless you are using text expressions containing shift codes.

♦ Mixed-data mode can also be set in Screen Design using the SO/SI
attribute. Refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001.

♦ If MIXMODE is set to ON in your program, and that program
executes an external DO, MIXMODE is set to OFF in the externally
done program.

♦ See also “KANJI (Kanji users only)” on page 298, “MIXD” on
page 327, “MIXM” on page 328, and “MIXT” on page 331.

Chapter 3 MANTIS programming language

330 P39-5002-00

Example The following example shows how the MIXMODE function is used to
control the mixed-data mode:

In this example < means SO (Shift-out) and > means SI (Shift-in).

00010 MIXMODE ON

00020 TEXT A(80),B(80)

00030 A="abc< 1 2 >de< 3 >fg"

Example Results Comments
MIXMODE ON

A-"< 2 >" "abc< 1 >de< 3 >fg"

MIXMODE OFF

A-"< 2 >" "abc< 1 2 >de< 3 >fg"

MANTIS is not doing
special processing in
looking for SO/SI
strings.

MIXT

MANTIS Language 331

MIXT
The MIXT function extracts a SBCS (single byte character set) text string
from text and mixed-data expressions.

MIXT(t)

t

Description Required. Specifies the text expression that can contain Shift-out and
Shift-in codes, as well as DBCS data.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

General considerations

♦ Using this function requires that the MIXMODE statement be set to
ON. (See the MIXMODE statement.)

♦ See also “KANJI (Kanji users only)” on page 298, “MIXD” on
page 327, “MIXM” on page 328, and “MIXT” on page 331.

Example The following example shows how the MIXT function extracts a SBCS
(single byte character set) text string from text and mixed-data
expressions:

In this example < means SO (Shift-out) and > means SI (Shift-in).

00010 MIXMODE ON

00020 TEXT ALPHA(20),BETA(20)

00030 ALPHA="A< 1 >BC< 2 >"

Example Results Comments
MIXT(ALPHA) "ABC" Extracts only SBCS

(Text) data

Chapter 3 MANTIS programming language

332 P39-5002-00

MODIFIED
The MODIFIED function tests whether a specific field, any field within a
map definition, or any field within the entire map set changed during the
last physical I/O. Because zero evaluates to FALSE, you can use
MODIFIED as a logical or arithmetic function.

�
�
�

�
�
�

(TERMINAL)
]) [, (

 MODIFIED
name-fieldname-screen

screen-name

Description Optional. Specifies the name (as defined in a previously executed
SCREEN statement) of the screen you are testing.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Consideration If you supply only screen-name, MANTIS returns the number of fields
altered during the last physical I/O to the terminal. MANTIS returns 0
(FALSE) if no fields were modified.

field-name

Description Optional. Specifies the name of the field you are testing.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Consideration If you supply field-name, MANTIS returns TRUE (1) if, and only if, you
alter the specified field. Otherwise, MANTIS returns FALSE (0).

MODIFIED

MANTIS Language 333

TERMINAL

Description Optional. Indicates if any field in the map set was modified.

General considerations

♦ MANTIS resets modified field indicators only when you CONVERSE
a screen for physical I/O. In other words, MANTIS does not reset
field indicators when you converse a screen with the WAIT option. If
you add the UPDATE option to a CONVERSE statement, MANTIS
allows you to modify all unprotected fields in a map set.

♦ If the screen is defined in a caller and passed as a parameter on an
external DO, both the screen and the field-name must be passed if
modified (map,field) is used.

♦ See also the KEEP MAP MODIFIED attribute under “General
considerations for the ATTRIBUTE statement” on page 110.

MANTIS evaluates 0 as FALSE and any other number as TRUE when
the MODIFIED function is used in a conditional expression.

Chapter 3 MANTIS programming language

334 P39-5002-00

Examples

♦ The following example determines the fields that were modified
during the last CONVERSE statement:
00010 SCREEN CLIENT_INFO("CLIENT_INFORMATION")

00020 CONVERSE CLIENT_INFO

00030 IF MODIFIED(CLIENT_INFO)

00040 .DO CLIENT_PROCESSING:|ONE OR MORE FIELDS CHANGED

00050 END

♦ The following example uses the MODIFIED function as a logical or
arithmetic function:
00010 ENTRY CLIENT_PROCESSING

00020 .FIELDS_TO_CHECK=MODIFIED(CLIENT_INFO)

00030 .I=1

00040 .LIMIT=SIZE(CLIENT_NAME,1)

00050 .WHILE I<=LIMIT AND FIELDS_TO_CHECK

00060 ..IF MODIFIED(CLIENT_INFO,CLIENT_NAME(I))

00070 ...| perform any edit checks

00080 ...FIELDS_TO_CHECK=FIELDS_TO_CHECK-1

00090 ..END

00100 ..I=I+1

00110 .END

00120 EXIT

NEXT

MANTIS Language 335

NEXT
Use the NEXT statement to proceed immediately to the next conditional
repeat in a FOR-END, UNTIL-END, or WHILE-END statement or to the
next WHEN condition in a WHEN-END statement.

NEXT

General considerations

♦ In FOR-END, and WHILE-END statements, NEXT results in the
repeat only if the respective condition is satisfied. If the condition is
not satisfied, the statement after the END statement is executed.

♦ In UNTIL-END, NEXT results in the repeat only if the UNTIL condition
is not satisfied. If the UNTIL condition is satisfied, the statement after
the END statement is executed.

♦ In FOR-END statements, NEXT causes MANTIS to add the
increment to the counter before comparing the counter and to
perform the FOR-END termination checking (see “FOR-END” on
page 226).

♦ In WHEN-END statements, NEXT causes MANTIS to drop through
to the next WHEN condition or to the END statement (after the last
WHEN in the program).

♦ NEXT is not required before the END statement. Executing the END
statement is sufficient to repeat the FOR, WHILE, or UNTIL, based
on condition checking.

♦ With nested logic statements, NEXT proceeds with the innermost
enclosing FOR-END, UNTIL-END, WHEN-END, or WHILE-END
statements where it occurs.

♦ See also “BREAK” on page 136 and “RETURN” on page 388.

Examples The following example shows how NEXT can be used with a FOR-END
loop:

10 FOR L=1 TO MAXLINES

20 .IF NOT(MODIFIED(CUST_DETAIL)) <----If this condition is TRUE, then
30 . NEXT logic flow will continue to
40 .END statement 10.
50 .UPDATE CUSTOMER_FILE
60 END

Chapter 3 MANTIS programming language

336 P39-5002-00

NOT
The NOT function returns TRUE (1) for an arithmetic expression if a
evaluates to FALSE (0); otherwise, NOT returns FALSE (0).

NOT(a)

a

Description Required. Specifies the value whose logical negation is to be returned.

Format Specifies any valid arithmetic expression

General considerations

♦ Note that NOT is a function rather than an operator like AND and
OR. See AND and OR operators in “Arithmetic expressions” on
page 45.

♦ See also “ABS” on page 86, “FALSE” on page 221, “SGN” on
page 399, and “TRUE” on page 472.

NOT

MANTIS Language 337

Examples

Example Results Comments
FLAG=TRUE

NOT(FLAG) 0 (FALSE)

A=3:B=3

NOT(A=B) 0 (FALSE)

A=3

7+NOT(A) 7
NOT value for any non-
zero is 0.

A=1:B=0

NOT(A OR B) 0 (FALSE)
A and B are treated as
Boolean values.

The following example shows how the NOT function can be used to test
numeric values:
00010 IF NOT(A=3 OR J=1)

.

.

.

00100 END

The following example shows how the NOT function can be used to test
a logic variable:
00010 BIG ERROR

00090 DO EDIT_CHECK(ERROR)

00100 IF NOT (ERROR)

.

.

.

00200 END

Chapter 3 MANTIS programming language

338 P39-5002-00

NULL
The NULL function returns a null (zero-length) text or DBCS value (“”).

NULL

General considerations

♦ Do not confuse the null string result with null values or missing values
associated with RDM user views or SQL variables.

♦ MANTIS does not provide RDM null support with this function.

♦ MANTIS does not provide support to SQL host variables with this
function. Use indicator variables for null specification for SQL host
variables.

♦ See also “FALSE” on page 221, “TRUE” on page 472, and “ZERO”
on page 512.

Example The following example shows how the NULL function returns a zero-
length string:

Example Results Comments
NULL ""

The following shows how you can use NULL as a text expression:
00010 TEXT A

00020 A=NULL

00030 WHILE A=NULL

.

.

.

00050 END

NUMERIC

MANTIS Language 339

NUMERIC
Use the NUMERIC function to determine if a text expression contains a
valid number.

NUMERIC (text-expression)

text-expression

Description Required. Specifies the expression you want MANTIS to check.

Format Text expression

General considerations

♦ TRUE (1) is returned if the text expression contains a valid number;
FALSE (0) is returned if it is not a valid number.

♦ A valid number is defined by the following rules:

- May contain one decimal point (defined in your User Profile).

- May contain commas (thousands separators) in valid positions,
which are defined in your User Profile.

- May have a leading or trailing sign character, but not both. The
sign character may be separated from the rest of the number by
blanks.

- Must contain at least one numeral (0–9) without embedded
spaces.

- May not contain currency notation (for example, $, ₤, or €) or E
notation.

Chapter 3 MANTIS programming language

340 P39-5002-00

Examples

Example Results Comments
NUMERIC("123,456.789") TRUE
NUMERIC("-.05") TRUE
NUMERIC("-432.876") TRUE
NUMERIC("- 432.876") TRUE
ABC="-1234.55"

NUMERIC(ABC+"44")

TRUE

NUMERIC ("") FALSE Empty string,
NUMERIC("$1234.55") FALSE Contains “$”.
NUMERIC("A33") FALSE Contains alphabetic.
NUMERIC("12-233-0323") FALSE Embedded “-”

OBTAIN

MANTIS Language 341

OBTAIN
The OBTAIN statement gets data from an unformatted screen and
assigns that input data to numeric and text variables. You can also use
OBTAIN to retrieve unsolicited data (in the lower left corner) on a
formatted screen if the OBTAIN follows a CONVERSE.

OBTAIN v1, v2, v3,...

v

Description Required. Specifies the arithmetic, text, or DBCS variables or array
elements you want to obtain.

Format A MANTIS symbolic name, subscripted if an array (see “Symbolic
names” on page 24)

General considerations

♦ You can mix different types of variables in your list.

♦ When you enter values in response to an OBTAIN statement,
separate the values with semicolons.

♦ If MANTIS already has data on the screen from a previous
CONVERSE statement, and no intervening SHOW or PROMPT
statement has been executed, the data you entered during the
previous CONVERSE feeds the OBTAIN statement and no terminal
interaction takes place.

♦ If the OBTAIN statement follows a SHOW, MANTIS waits until you
key in data. MANTIS assigns these input data items to variables in
the list until it exhausts the list or your input data. If MANTIS
exhausts the input data before assigning values to all items in the list,
the values of the remaining items on the list are unaltered.

♦ When lowercase input is accepted from the terminal (ATTRIBUTE
(TERMINAL)=“LOWERCASE”), TEXT fields from the OBTAIN are
left as they are entered. If you want translation on these fields, you
must use the UPPERCASE function on them, for example:

OBTAIN NAME

NAME=UPPERCASE(NAME)

Chapter 3 MANTIS programming language

342 P39-5002-00

♦ If you have DBCS language support, MANTIS accepts multiple
DBCS fields from the command line. DBCS fields can be mixed with
text and numeric fields.

♦ See also “CONVERSE” on page 157, “KEY” on page 301, “KILL” on
page 303, “SHOW” on page 400, and “WAIT” on page 506.

Examples

♦ The following example shows how OBTAIN gets data from a
formatted screen:

00005 FILE RECORD("DEMO_LIST","PASS3")

00010 SCREEN MAP("DEMO")

00020 SHOW"ENTER KEY FOR INQUIRY"

00030 OBTAIN ACCT_NUMBER

00040 GET RECORD(ACCT_NUMBER)

00050 WHILE MAP<>"CANCEL"

00060 .CONVERSE MAP

00070 .OBTAIN ACCT_NUMBER

00080 .GET RECORD(ACCT_NUMBER)

00090 END

♦ The following example shows how an OBTAIN statement can be
used with a SHOW statement for an unformatted screen:

00005 SHOW"PLEASE ENTER MONTH;DAY;YEAR"

00010 OBTAIN MONTH,DAY,YEAR

♦ During execution, the input would appear in the following format:
PLEASE ENTER MONTH;DAY;YEAR

4;2;91

You must use a semicolon (;) to separate data in response to an
OBTAIN statement.

ORD

MANTIS Language 343

ORD
Use the ORD function to return the numeric value of the first character
EBCDIC code.

ORD(a)

a

Description Required. Specifies a text expression whose value you want returned.

Format Any text expression

General considerations

♦ Only the first character of the text expression is returned as value.

♦ If a specifies a null string, ORD(a) returns -1.

Example

Example Results Comments
ORD("C") 195
ORD("BECAUSE") 194 Same as ORD(“B”).
ORD(".") 75
ORD(NULL) -1 Indicates null string.

The CHR and ORD functions depend on the machine architecture.
Results will be different for code moved to an ASCII machine.

Chapter 3 MANTIS programming language

344 P39-5002-00

OUTPUT
The OUTPUT statement routes output from the CONVERSE and SHOW
statements and the LIST command.

OUTPUT
SCREEN
PRINTER[VIA]
SCREEN PRINTER [VIA]

e
e

�

�
�

��

�

�
�

��

SCREEN

Description Optional. Tells MANTIS that you want output from CONVERSE,
PROMPT, SHOW, or LIST to be routed to your display terminal.

Format Must be coded exactly as shown

PRINTER

Description Optional. Tells MANTIS that you want output from CONVERSE,
PROMPT, SHOW or LIST to be routed to your designated printer.

Format Must be coded exactly as shown

Consideration The destination PRINTER is named by user profile, and the default
printer ID is named by the PRINTER= statement, or by an installation
exit.

VIA e

Description Optional. Tells MANTIS the name of a printer exit program. VIA must be
coded exactly as shown. The e must be a text expression that evaluates
to a 1–8 character printer exit name. (If the first five characters are
/MANX, the length is 5–9. Refer to MANTIS Administration, OS/390,
VSE/ESA, P39-5005 for more information on printer exits.)

Considerations

♦ If you don’t specify a program, MANTIS either handles the output or
passes it to the default printer exit program (if specified in your user
profile).

♦ Contact your System Administrator or Master User for printer exits
available at your site.

OUTPUT

MANTIS Language 345

General considerations

♦ The OUTPUT statement clears all output lines from the SHOW
statement that WAIT or OBTAIN have not forced out to the terminal.

♦ When the OUTPUT PRINTER is in effect, but the OUTPUT SCREEN
is not, the WAIT, OBTAIN, or CONVERSE statements simulate the
condition of an ENTER key being pressed. MANTIS does not
suspend the program. OUTPUT that is only to a printer does not
reset the current SLOT and SLICE counters. Therefore, a program
that runs while conversing to a screen can fail with POT or RPR
errors when output is only sent to a printer.

♦ To have I/O return to the screen after you have sent data to the
printer (via the OUTPUT PRINTER statement), add an OUTPUT
SCREEN statement.

♦ Printer destination can be changed by the installation exit. See your
Master User for details.

♦ See also “PRINTER (Statement)” on page 371.

Examples

♦ The following example routes output to your display terminal. In
programming mode, MANTIS automatically routes output to the
display terminal unless you specify otherwise.

OUTPUT SCREEN

♦ The following example routes output from SHOW and CONVERSE
statements to the printer assigned to your terminal. You can print an
entire program on an online printer using the OUTPUT PRINTER
statement in immediate mode, followed by a LIST command. When
MANTIS sends the program to the printer output queue, the output
returns to your display terminal.

OUTPUT PRINTER

♦ The following example routes output to your display terminal and
printer:

OUTPUT SCREEN PRINTER

♦ The following example routes output to your display terminal and to
the printer, but also routes it to a printer exit program (named
EXAMPLEA) for processing as that program directs:

OUTPUT SCREEN PRINTER VIA"EXAMPLEA"

Chapter 3 MANTIS programming language

346 P39-5002-00

PAD
The PAD statement allows you to pad either or both sides of a text or
DBCS variable with a specified character.

PAD []
AFTER
ALL
BEFORE

v exp
�

�

�
�

�

�

�
�

v

Description Required. Represents the variable to be padded.

Format A subscripted or unsubscripted MANTIS symbolic name

Considerations

♦ Must be a TEXT, KANJI, or DBCS variable.

♦ If the referenced variable is subscripted apart from the array
occurrence (see the LET statement), the BEFORE, AFTER, and ALL
options cannot be used. If you try to use the substring subscripts
with one of these options, you receive an error message.

♦ If the referenced variable is not substring subscripted, MANTIS
supplies the necessary pad characters to fill the variable to its
maximum length.

♦ If the referenced variable has two substring subscripts, each
subscript represents the boundaries of the pad operation. The
leftmost boundary is marked by the first substring subscript; the
rightmost boundary by the second substring subscript.

♦ If the referenced variable has one substring subscript, MANTIS
assumes that the second (missing) substring subscript is equal to the
maximum size of the variable. Therefore, the first substring subscript
marks the starting point of the pad operation. With no second
subscript, the end of the pad operation is the rightmost byte of the
originally defined area for the variable.

PAD

MANTIS Language 347

exp

Description Optional. Indicates a text (or DBCS) expression that represents the pad
character.

Format A 1–n character TEXT, KANJI, or DBCS expression

Considerations

♦ If you do not supply a value, MANTIS automatically uses spaces for
the pad character.

♦ Only the first character of exp is used.

AFTER

Description Optional. Specifies that padding occur on the right-hand side of the
variable (trailing pad character). This is the default value.

ALL

Description Optional. Indicates that padding occur on both sides of the variable
(leading and trailing pad characters), centering the original text as much
as possible.

Consideration If you specify the ALL option, the original value is centered within the
variable, surrounded by the pad characters.

BEFORE

Description Optional. Specifies that padding occur on the left-hand side of the
variable (leading pad characters).

General considerations

♦ MANTIS automatically pads text and DBCS variables on the right
with blanks before sending to an external file, TOTAL file, interface,
or view.

♦ See also “LET (TEXT/KANJI/DBCS variables)” (left-hand side
subscripting) starting on page 312, “POINT” on page 368, and
“UNPAD” on page 474.

Chapter 3 MANTIS programming language

348 P39-5002-00

Examples The following examples of code and results show how the PAD
statement can be used with various symbols on either side of an
expression. In the following examples:
00010 TEXT A(20),B(20)
00020 A="ABC"

Example Results Comments
PAD A "*" ALL "********ABC*********" Centered,

filled with “*”.
PAD A BEFORE " ABC" Right-

justified,
filled with
blanks.

PAD A "ABC " Left-justified,
filled with
blanks.

PAD B "?" "????????????????????" Empty string
filled with the
“?”
character.

PAD A "*" AFTER "ABC*****************"
PAD A "-" BEFORE "-----------------ABC"
PAD A(3) "/" "AB//////////////////" Filled from

position 3 to
the end of
the string
with “/”.

PAD A(7,11) "&" "ABC &&&&&" Filled from
positions 4–
6 with
blanks, then
filled from
positions 7–
11 with “&”.
(The current
length is set
to 11.)

PAD A "+"

PAD A(7,11) "&"

"ABC+++++++++++++++++"

"ABC+++&&&&&+++++++++"
Middle of
string filled
with “&”.

PASSWORD

MANTIS Language 349

PASSWORD
The PASSWORD function returns a text string containing the current
password for the signed on user.

PASSWORD

General considerations

♦ PASSWORD always returns a text string 1–16 characters long.

♦ Statements containing the PASSWORD function do not HPO Bind.
Use a variable or literal password to ensure bindability.

♦ See also “USER” on page 497.

Example The following example shows how the PASSWORD function is used to
return a text string containing the current user password:

Example Results Comments
PASSWORD "5P4S67"
PASSWORD(1,4) "5P4S" Substringing permitted.

00010 ENTRY CUST_ENTRY

00020 .SCREEN MAP("CUST_ENTRY")

00030 .FILE REC("CUST_FILE",PASSWORD)

00040 .FILE RECX("CUST_FILE",PASSWORD,PREFIX)

00050 .CONVERSE MAP

00060 .WHILE MAP<>"CANCEL"

Chapter 3 MANTIS programming language

350 P39-5002-00

PERFORM
The PERFORM statement invokes a user-written COBOL, Assembler, or
PL/I target program without passing parameters to it. When you perform
another program, your program can either return to MANTIS or transfer
control to a new program. If you are a CICS user, you can also use the
PERFORM statement to run a MANTIS or external transaction as a
background task. You can also end MANTIS and delete the context.
Control will not resume at the statement following the PERFORM the next
time MANTIS is invoked. Control remains with the performed module
and does not return to MANTIS.

PERFORM t

t

Description Required. Specifies the text expression that represents the object of the
PERFORM.

Options Where the t is a text expression evaluating to one of the following:

♦ “program”

♦ “program/XCTL”

♦ “program/EXEC”

♦ “[trans-id]/BACK,user-id,password,program[;text-string]”

♦ “trans-id/EXTN[,text-string]”

♦ “[transaction codeb/ [text-string]]”

♦ “transaction code/XCTL[,text-string]”

PERFORM

MANTIS Language 351

General consideration

The differences between a PERFORM and a CALL routine are:

CALL:

♦ Passes data in the predefined interface area.

♦ Runs in foreground only.

♦ Can only be a non-MANTIS program.

♦ Cannot do terminal I/O unless the MANTIS user is conversational
CICS.

♦ Returns to the next MANTIS statement.

PERFORM:

♦ Passes data in the text expression.

♦ Runs in foreground or background.

♦ Can be a MANTIS or non-MANTIS program.

♦ Can do terminal I/O regardless of the MANTIS user.

♦ Can run outside of MANTIS and then return to the next MANTIS
statement.

Chapter 3 MANTIS programming language

352 P39-5002-00

The following table summarizes the different variations of PERFORM,
which are each described separately in the following pages:

Option

Context saved

How invoked

Target a
MANTIS
program?

COMMAREA
passed?
(CICS only)
non-included
programs

Does control
return to next
MANTIS
statement

program Yes, unless no
TRANSID on
EXEC CICS
RETURN

CICS LINK,
CALL for
batch

No Yes Yes

/XCTL No CICS XCTL No Yes No
/EXEC Yes CICS XCTL No Yes Yes
/BACK No CICS START Yes No Yes
/EXTN No CICS START No No Yes

PERFORM

MANTIS Language 353

PERFORM transfers control to another program without
passing program variables

PERFORM "program"

program

Description Required. Specifies the name of the target program you want to invoke.

Format Must be a text expression producing a text value of 1–8 characters in
length and must not contain embedded blanks

Considerations
♦ Under CICS, the program must be defined in the PPT (Processing

Program Table) or CSD (CICS System Definition File) under RDO
(Resource Definition Online) and exist in the DFHRPL Load/Core
Image Library.

♦ Under CICS, the target program is invoked via the “EXEC CICS
LINK” command. MANTIS saves the TWA before control is passed
to the target program. Therefore, the target program can use the
TWA area as a workspace. MANTIS is still in storage. After subtask
completion, CICS gives control back to MANTIS.

♦ Under CICS, if your target program runs in conversational mode, it
returns to the next MANTIS statement after the PERFORM when you
issue the “EXEC CICS RETURN” command.

♦ Under CICS, if your target program wants to do terminal I/O in
pseudoconversational mode, it must do the following:

EXEC CICS RETURN TRANSID (your-transid)

 MANTIS then saves its context and return to CICS. CICS sends the
next terminal input to your-transid.

♦ Under CICS, if MANTIS has been passed a COMMAREA by a
previous task, it passes it to the target program.

♦ In batch, the target program is invoked via BALR 14,15. The
program must exist in the STEPLIB/JOBLIB load library or sublibrary
chain.

♦ MANTIS issues DBMS SINON and SINOF calls. The target program
must not issue them. If it does so, FUNC or NACT DBMS statuses
occur. See TOTAL and VIEW ON/OFF if your interface programs do
sign ons or sign offs, or expect a certain state (on or off) when they
are invoked.

Chapter 3 MANTIS programming language

354 P39-5002-00

General considerations
♦ The object of the PERFORM can be any text expression. The literal

shown here as an example is “program”.

♦ When you want to return to MANTIS at the statement following the
PERFORM, enter code such as:

EXEC CICS START TRANSID (resX) TERMINAL (current terminal)

 or
EXEC CICS RETURN TRANSID (resX)

 where resX is a valid MANTIS resume transaction ID.

 The transaction ID in MANTIS can be either paired or non-paired.

 With paired IDs, there is an initial ID and a resume ID. If you start
MANTIS with the initial ID, MANTIS always begins by executing your
sign-on and facility programs. With the resume ID, MANTIS attempts
to resume at the statement following the PERFORM. If you have
paired IDs, and the ID you supply is not contained in the list of
transaction ID pairs, MANTIS attempts to resume at the statement
following the PERFORM.

 With non-paired IDs, MANTIS attempts to resume at the statement
following the PERFORM unless the task is a background task, in
which case MANTIS begins by executing your sign-on and facility
programs.

 See your Master User for details on transaction IDs.

♦ In CICS, if you XCTL back to MANTIS, it reinitializes. It does NOT
resume at the statement following the PERFORM.

♦ The PERFORM statement can be used to construct menu-driven
systems where the menu and some system components are written
in MANTIS. Performance-sensitive or existing components can
remain as COBOL, Assembler, or PL/I, and can be invoked from
MANTIS via the PERFORM statement.

♦ Batch MANTIS supports the CALL and PERFORM verbs using
normal IBM linkage conventions.

♦ See also “CALL” on page 137, “DO” on page 206, and “RUN” on
page 391.

PERFORM

MANTIS Language 355

Example The following example shows how to use the PERFORM statement to
invoke another program into your MANTIS program without trading
variables:
00010 ENTRY FACILITY

00020 .SCREEN MAP("MENU")

00030 .CONVERSE MAP

00040 .WHILE MAP="CANCEL"

00050 ..WHEN OPTION=1 OR MAP="PF1"

00060 ...CHAIN"CUSTOMER_NAMES"

00070 ..WHEN OPTION=2 OR MAP="PF2"

00080 ...PERFORM"INVOICES"

00090 ..WHEN OPTION=3 OR MAP="PF3"

00100 ...PERFORM"/BACK,USR1,PSW1,ACCOUNTING:REPORTS"

00110 ..END

00120 .END

00130 END

Chapter 3 MANTIS programming language

356 P39-5002-00

PERFORM transfers control to an external program without a
return

PERFORM "program/XCTL"

program

Description Required. Specifies the name of the target program you want to invoke.

Format Must be a text expression from 1–8 characters in length, and must not
contain embedded blanks

Considerations (CICS)

♦ The program must be defined in the PPT (Processing Program
Table) or CSD (CICS System Definition File) under RDO (Resource
Definition Online) and exist in the DFHRPL Load/Core Image Library.

♦ The target program runs under the MANTIS transaction code until
“CICS RETURN” is issued.

♦ The size of the TWA available to the target program is that given in
the PCT for the MANTIS transaction.

♦ If the target program contains an “EXEC CICS RETURN”, control is
not returned to the MANTIS program invoking it.

PERFORM

MANTIS Language 357

/XCTL

Description Required. Indicates that you want to transfer control to the program.

Format Must immediately follow the target program name

Considerations

♦ In CICS, if you restart MANTIS (with START or XCTL) it does not
start at the next statement following the PERFORM. It starts
initializing with MASTER_SIGNON.

♦ If MANTIS has issued a DBMS SINON, no SINOF is issued with
“PERFORM ... XCTL”. This can cause dangling DBMS tasks to
remain in the system, unless the performed program issues a
SINOF.

♦ See also “CALL” on page 137.

General considerations

♦ The object of the PERFORM can be any text expression. The literal
shown here as an example is “program/XCTL”.

♦ Applies to CICS only.

♦ See also “CALL” on page 137, “DO” on page 206, and “RUN” on
page 391.

Example The following example shows the PERFORM statement transferring
control to an external program:
00010 ENTRY FACILITY

00020 .SCREEN MAP("CUSTOMER")

00030 .CONVERSE MAP

00040 .IF KEY="PF12"

00050 ..PERFORM "EXTNPGM1/XCTL"

00060 .END

00070 .WHILE MAP<>"CANCEL" (EXTNPGM1 will not
. return control to
. the MANTIS program.)

Chapter 3 MANTIS programming language

358 P39-5002-00

PERFORM transfers control to another program and saves
MANTIS context without a return

PERFORM "program/EXEC"

program

Description Required. Specifies the name of the target program you want to invoke.

Format Must be a text expression from 1–8 characters in length and must not
contain embedded blanks

Consideration (CICS)

♦ The program must be defined in the PPT (Program Properties Table)
or CSD (CICS System Definition file) under RDO (Resource
Definition Online) and exist in the DFHRPL Load/Core Image Library.

PERFORM

MANTIS Language 359

/EXEC

Description Required. Indicates that you want to transfer control to the program.

Format Must immediately follow the target program name

General considerations

♦ The object of the PERFORM can be any text expression. The literal
shown here as an example is “program/EXEC”.

♦ This option applies to CICS TP monitors only.

♦ The size of the TWA available to the target program is the size given
in the PCT for the MANTIS transaction.

♦ If the target program contains an “EXEC CICS RETURN”, control is
not returned to the MANTIS program invoking it.

♦ To return to MANTIS at the statement following the PERFORM, enter
code such as:

EXEC CICS START TRANSID (resX) TERMINAL (current terminal)

 or:
EXEC CICS RETURN TRANSID (resX)

 where resX is a valid MANTIS resume transaction ID. See your
Master User for details.

♦ Under CICS, if MANTIS has been passed a COMMAREA by a
previous task, MANTIS passes the COMMAREA to the target
program.

♦ MANTIS rolls out to temporary storage and then performs a transfer
of control. The MANTIS program can then be restarted.

♦ If you XCTL back to MANTIS, it reinitializes. It does NOT resume at
the statement following the PERFORM.

♦ See also “CALL” on page 137, “DO” on page 206, and “RUN” on
page 391.

Chapter 3 MANTIS programming language

360 P39-5002-00

Example The following example shows the PERFORM statement transferring
control to an external program while saving the MANTIS context:
00010 ENTRY FACILITY

00020 .SCREEN MAP("CUST_SETUP")

00030 .CONVERSE MAP

00040 .WHILE MAP<>"CANCEL"

00050 ..WHEN OPTION=1 OR MAP="PF1"

00060 ...CHAIN "CUSTOMER_NAMES"

00070 ..WHEN OPTION=3 OR MAP="PF3"

00080 ...PERFORM "ORDER/EXEC"

00090 ..END

00100 .END

00110 EXIT

ORDER does not automatically return control to the MANTIS program;
however, MANTIS context is saved and can be restarted.

PERFORM

MANTIS Language 361

PERFORM starts a MANTIS program as a background task

PERFORM "[trans-id]/BACK,user-id,password,program[;text-
string]"

trans-id

Description Optional. Specifies MANTIS transaction code. If a transid is not explicitly
specified, a resume transid is assigned to the background task by
MANTIS. See your Master User for details.

/BACK

Description Required. Invokes a background task.

user-id

Description Required. Specifies a valid MANTIS user that you want signed on in the
background task.

Format Must be a valid MANTIS user ID

password

Description Required. Provides password for the specified user.

Format Must be the corresponding password for the user ID specified above

program

Description Required. Specifies the name of the MANTIS program you want to use
as a background task.

Format Must be a valid MANTIS program name

Consideration If the program resides in a user that is not the signed-on user, it must
appear in the following format:
user-name:program-name

Note that this format permits a total length of 33 characters.

Chapter 3 MANTIS programming language

362 P39-5002-00

text-string

Description Optional. Specifies a text string that you want to pass to the background
MANTIS program.

Format Must be 1–100 characters in length (minus the length of the program
name) and must also appear as an argument on the ENTRY statement
on the background MANTIS program

General considerations

♦ The object of the PERFORM can be any text expression. The literal
shown here as an example is “[trans-id]/BACK”.

♦ MANTIS issues a start for a new, non-terminal associated task,
passing the name of the MANTIS program to execute. The
originating MANTIS task continues.

♦ Your Master User may have modified the MASTER:SIGN_ON
program, so that the user-id, password, and text-string are also
available to that program. See your Master User for details.

♦ Applies to CICS TP monitors only.

♦ This statement initiates a MANTIS program under the resume transid
of the program making the PERFORM request. The invoked
program runs as a background task (the task is not attached to a
terminal). The MANTIS program that is invoked as well as any
programs it calls are not attached to a terminal either. If you try to
perform terminal I/O (such as an error message display), MANTIS
writes the I/O to an external ESDS VSAM file and terminates the
task. Printer terminal writes are allowed. The terminal ID of the
background task is BACK$MAN. CICS assigns the background task
a unique task number.

♦ When the program running as a background task causes the
background task to end, control is returned to the CICS system. The
MANTIS program that invoked the background MANTIS program is
unaware of the background task status.

♦ MANTIS does not check the text-string entry for correctness or
content.

♦ An ESDS VSAM file (CSOL) must be set up to capture background
information about the background task, or it abends at completion.
See your Master User for details. (Refer to MANTIS Administration,
OS/390, VSE/ESA, P39-5005.)

PERFORM

MANTIS Language 363

♦ To stop a MANTIS background program, do one of the following:

- Sign on to a user with MASTER:TERMINATE facility program.

- Chain to MASTER:TERMINATE at the completion of the invoked
program.

- Modify the facility program to chain to MASTER:TERMINATE if
TERMINAL=“BACK$MAN”.

♦ When the background task terminates, control passes to the user’s
facility program. If the facility program contains any terminal I/O, an
error is written to the CSOL journal. (The program can send data to
the printer.) Contact your Master User for suggestions.

♦ If you do not want control passed to a facility program, and you wish
the task to terminate, chain to the MASTER:TERMINATE program.

♦ The following message types are written to the CSOL (log) file. For
more information, refer to MANTIS Administration, OS/390,
VSE/ESA, P39-5005.

Error code Explanation

NUCEBTE End MANTIS background task.
NUCFBME Program error background task statement.
NUCSBTE Start MANTIS background task.
NUCTBME Invalid terminal request statement.

♦ When running a background task, MASTER:SIGN_ON is passed the

parameters from the PERFORM. Your Master User must ensure
that the MASTER:SIGN_ON is able to handle incoming parameters.
Refer to MANTIS Administration, OS/390, VSE/ESA, P39-5005, for
more information.

♦ When running a MANTIS background task, during an attempt to write
a record to the CSOL file, it is possible to get a scheduled task
abend. The following table lists error codes you can receive and their
meanings.

♦ See also “CALL” on page 137, “DO” on page 206, and “RUN” on
page 391.

Chapter 3 MANTIS programming language

364 P39-5002-00

Abend
code

Explanation

BDUP CICS returned a status of “DUPREC”. This CICS
status return means that VSAM indicated that the
current record being written has a key that is the same
as a record already on file.

BERR CICS returned some unexpected status not covered by
any other ABEND code.

BILL CICS returned a status code of “ILLOGIC”. This CICS
status code means that VSAM indicated an error
condition not covered by any other CICS status code.

BINV CICS returned a status code of “INVREQ”. This CICS
status code means that either an error was detected in
the parameters coded on the write request, or the FCT
entry was not coded to allow the write to occur.

BIOE CICS returned a status code of “IOERR”. This CICS
status code means that VSAM indicated a physical I/O
error has occurred on the file.

BISC CICS returned a status code of “ISCINVREQ”. This
CICS status code means that a remote system
indicated a failure that does not correspond to a known
condition.

BLEN CICS returned a status code of “LENGERR”. This
CICS status code means that the length specified on
the write request exceeds the maximum length for this
file.

BNFL CICS returned a status code of “DSIDERR”. This
CICS status code means that the CSOL file is not
defined in the FCT.

BNOP CICS returned a status code of “NOT OPEN”. This
CICS status code means that the file was not open.

BNOS CICS returned a status code of “NOSPACE”. This
CICS status code indicates that the CSOL file is full.

PERFORM

MANTIS Language 365

Example The following example uses the PERFORM statement to start a MANTIS
program as a background task:
00010 ENTRY FACILITY

00020 .SCREEN MAP("CUSTOMER")

00030 .CONVERSE MAP

00040 .WHEN KEY="PF12"

00050 ..PERFORM"/BACK,EXAMPLES,CASINO,JACKSON"

00060 ...|START PROGRAM JACKSON AS A BACKGROUND TASK FOR

00070 ...|USER EXAMPLES WHOSE PASSWORD IS CASINO.

00080 ...|

00090 .WHEN KEY="PF6"

00100 ..PERFORM"/BACK,USR1,PSW1,MASTER:PGM1;WRITE"

00110 ...|START MANTIS PROGRAM MASTER:PGM1 FOR USR1 WHOSE

00120 ...|PASSWORD IS PSW1. PASS THE DATA STRING "WRITE" TO

00130 ...|MASTER:PGM1.

00140 ...|

00150 .END

Chapter 3 MANTIS programming language

366 P39-5002-00

PERFORM starts a non-MANTIS program as a background task

PERFORM "trans-id/EXTN[,text-string]"

trans-id

Description Required. Specifies the name of the external task to be initiated.

Format Must be a valid non-MANTIS CICS transaction ID defined in the PCT or
CSD under RDO

/EXTN

Description Required. Indicates an external task.

text-string

Description Optional. Specifies a text string for MANTIS to pass to the external task
that can be accessed with the EXEC CICS RETRIEVE command.

Format Must be a string from 1–200 bytes in length and separated from the
EXTN indicator with a comma

General considerations

♦ The object of the PERFORM can be any text expression; the literal
shown here as an example is “trans-id/EXTN”.

♦ MANTIS issues a start for a non-MANTIS, non-terminal associated
task. The originating MANTIS task continues.

♦ Applies to CICS TP monitors only.

♦ An EXEC CICS RETURN in the target program does not return to the
MANTIS program that invoked it. The target program normally
returns to CICS.

♦ Ensure that the external task initiated runs as a task not attached to
the terminal. The contents of the text string are application
dependent.

♦ You can access the text string in the target program using the EXEC
CICS RETRIEVE command. See also “CALL” on page 137, “DO” on
page 206, and “RUN” on page 391.

PI

MANTIS Language 367

Example The following example shows PERFORM starting a non-MANTIS
program as a background task:
00010 ENTRY FACILITY

00020 .SCREEN MAP("CUSTOMER")

00030 .CONVERSE MAP

00040 .WHEN KEY="PF12"

00045 ..|50 INITIATES TASK TSKU WITH NO DATA

00050 ..PERFORM"TSKU/EXTN"

00060 .WHEN KEY="PF6"

00065 ..|70 INITIATES TASK TSKV WITH TEXT-STRING READ-ONLY

00070 ..PERFORM"TSKV/EXTN,READ-ONLY"

00080 .END

00090 .|RETURNS HERE IF TASK TSKU OR TSKV IS INITIATED

00100 .|ELSE RETURNS PROGRAM LINKAGE UNSUCCESSFUL MESSAGE

PI
The PI function returns the value of PI (3.14159265).

PI

General consideration

 See also “ATN” on page 94, “COS” on page 164, “SIN” on page 403, and
“TAN” on page 454.

Example The following examples show how the PI function returns the value of pi:

Example Results Comments
PI 3.141592653589
SIN(PI/4) .7071067811865

00080 X=30

00090 | COMPUTE SIN(X) where X is in degrees

00100 DEGREES_TO_RADIANS=PI/180

00110 Y=SIN(X*DEGREES_TO_RADIANS)

00120 SHOW Y:WAIT

Chapter 3 MANTIS programming language

368 P39-5002-00

POINT
The POINT function returns a number identifying the position where the
last string addition or subtraction occurs when MANTIS evaluates the text
expression argument.

POINT ()t1 t2±

t1, t2

Description Required. Specifies any valid text or DBCS expression.

Consideration With subtraction (t1-t2), you can use POINT to determine if and where
one string exists within another. If t2 does not exist in t1, zero is
returned. Because 0 evaluates to FALSE, and any other value is true,
POINT can be used in a logical expression (see the examples). The
value returned can also be used in substringing operations. Normally,
you will use subtraction, because addition simply returns SIZE(t1).

General consideration

 See also “PAD” on page 346 “UNPAD” on page 474, and substringing in
“Text data” starting on page 50.

POINT

MANTIS Language 369

Examples

For these examples:
TEXT CUST:CUST="222-22-2222"

Example Results Comments
POINT(CUST-"2") 1 (TRUE) First occurrence

was at position 1.
Can use the
following, for
example, to
check for the
existence of “2” at
any position:
IF POINT(CUST-
"2"))

POINT(CUST-"-") 4 (TRUE) First occurrence
was at position 4.

POINT(CUST-"3") 0 (FALSE) String “3” does
not exist in
CUST.

NAME="Doe,John"

NAME(POINT(NAME-",")+1)

NAME(1,POINT(NAME-",")-1)

"John"

"Doe"

SHIP_DATE="02/01/30"

POINT (SHIP_DATE-"/"-"/")

TRUE True, if
SHIP_DATE has
at least two
occurrences of “/”
in the value.
There are
repeated “-”
operators.

Chapter 3 MANTIS programming language

370 P39-5002-00

The following example shows how the POINT function is used to show
substringing based on an occurrence of one string in another:

00010 ENTRY POINT_FUNCTION

00020 .TEXT NAME(30)

00030 .NAME="DOE,JOHN T."

00040 .COMMA_PT=POINT(NAME-",")

00050 .IF COMMA_PT

00060 ..NAME=NAME(COMMA_PT+1)+" "+NAME(1,COMMA_PT-1)

00070 .END

00080 EXIT

RUN

JOHN T. DOE

♦ The following example shows how you can use the POINT function
to check for a valid function key:
00010 IF NOT(POINT("PF1 PF2 PF3 PF4 PF5 ENTER CANCEL"-MAP))

00020 . MSG= "INVALID KEY PRESSED, MUST BE ENTER, CANCEL, or PF1 –PF5"

00030 END

PRINTER (Function)
The PRINTER function returns the current assignment.

PRINTER

Example

Example Results Comments
PRINTER "L84A" Current assigned

printer ID.
PRINTER(1,2) "L8" Substringing permitted.

Consideration The initial printer assignment is specified in the USER profile. See your

Master User for details.

PRINTER (Statement)

MANTIS Language 371

PRINTER (Statement)
The PRINTER statement assigns the printer device where MANTIS
routes output. The PRINTER function returns the current assignment.

PRINTER=t

t

Description Required. Specifies a TP monitor identification for the printer where
MANTIS routes output.

Format A 1–8 character text expression

Consideration If your CICS printer identification is less than four characters, you must
pad it on the right with blanks.

General considerations

♦ If an OUTPUT statement specifies routing to a printer and the current
program does not contain a PRINTER statement, MANTIS routes
output to the default printer device (for the signed on user).

♦ Printer destination can be changed by the installation exit. See your
Master User for details.

♦ In Batch MANTIS under MVS, the printer assignment specifies the
DDNAME.

♦ In Batch MANTIS, the printer assignment is not supported in VSE.

♦ Argument for the PRINTER statement (t) is translated into uppercase
upon execution of your program.

♦ See also “PASSWORD” on page 349, “TERMINAL” on page 455,
and “USER” on page 497.

Examples The following examples, which are equivalent to each other, show how to
use the PRINTER statement to route output.

♦ The following example routes output in one line:
00010 PRINTER="L84A"

♦ The following statement routes output in three lines:
00010 TEXT DEVICE(4)

00020 DEVICE="L84A"

00030 PRINTER=DEVICE

Chapter 3 MANTIS programming language

372 P39-5002-00

PROGFREE
The PROGFREE function returns the number of bytes remaining in the
program area.

PROGFREE

General considerations

♦ Use the PROGFREE function to determine the size of the current
program.

♦ You can break up your program, or make it smaller (e.g., by
removing comments) if there is little free program space left.

♦ See also “DATAFREE” on page 176 and “USERWORDS” on
page 498.

Example The following example shows how the PROGRFREE function returns the
number of bytes still available in the program area:

Example Results Comments
PROGFREE 65488 Value for an empty

program.

PROGRAM

MANTIS Language 373

PROGRAM
The PROGRAM statement identifies an external subroutine to be invoked
by a DO statement.

PROGRAM name1([library1:]program-name1,password1)
[, name2([library2:]program-name2,password2) . . .]

name

Description Required. Specifies the name you use to refer to your program in
subsequent DO statements.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Consideration When the symbolic name is previously defined, MANTIS bypasses this
definition.

[library:]program-name

Description Required. Specifies the name of the program as you saved it in program
design.

Format 1–49 character text expression that evaluates to a valid program name

Considerations

♦ If the subroutine is in another user’s library, you can access it by
specifying the name of the user in whose library it does reside
([library1:]).

♦ If the subroutine resides in your library, you can specify only the
program name.

♦ If this parameter is used, the colon (:) is required.

♦ If you want this entity to be HPO bound, the library name is required,
even if it is your own library.

Chapter 3 MANTIS programming language

374 P39-5002-00

password

Description Required. Specifies the password as you saved it during program
design.

Format 1–16 character text expression that evaluates to a valid password

General considerations

♦ Execute the PROGRAM statement only when you are sure your
program will execute an external subroutine. For unbound programs,
defer executing PROGRAM statements as long as possible. If the
external program is in the HPO Shared Pool, relative positioning of
PROGRAM statements prior to the DO is not significant.

♦ You must place an ENTRY-EXIT statement pair around the top level
routine in the subroutine you invoke. A program can DO both internal
and external subroutines.

♦ To avoid overhead during reexecution, keep complex variable types
(SCREEN, FILE, ACCESS, TOTAL, VIEW, and INTERFACE) in the
highest-level routine possible and pass them as parameters.

♦ Do not make every routine external, but group related routines
together in one program with multiple internal routines. You can use
MANTIS COMPONENTS to keep a single version of source code in
multiple programs

♦ Programs belonging to the CONTROL user are not available as
external subroutines.

♦ The SLICE and SLOT statements are ignored in an externally done
program.

PROGRAM

MANTIS Language 375

♦ Binding a PROGRAM statement saves the library code (and name)
of the external routine. If you transfer a bound program to another
system, the same library name can have a different library code.
Rebind any transferred programs containing bound PROGRAM
statements on the target system. Your Master User can help you
determine the library code.

♦ The library and program-name arguments for the PROGRAM
statement are translated to uppercase upon execution of your
program.

♦ See also “COMPONENT” on page 153, “DO” on page 206, “ENTRY-
EXIT” on page 213, “RELEASE (Function)” on page 378, and
“RELEASE (Statement)” on page 380.

Example The following example shows how the PROGRAM statement invokes an
external subroutine:
00010 ENTRY EDIT_PROGRAM

00030 .TYPE="CREDIT CHECK"

00040 .PROGRAM EDIT_RTN("VALIDATION","COMMON")

00050 .DO EDIT_RTN(TYPE,CUST_NO,STATUS,MESSAGE)

00060 .IF STATUS<>"GOOD"

00070 ..DO ERROR_RTN(CUST_NO)

00080 .END

00090 .TYPE="SELECT SALES REP"

00100 .DO EDIT_RTN(TYPE,CUST_NO,STATUS,MESSAGE)

00110 .IF STATUS<>"GOOD"

00120 ..DO ERROR_RTN(SALES_REP)

00130 .ELSE

00140 ..SALES_REP=MESSAGE

00150 .END

00160 EXIT

00170 ENTRY ERROR_RTN(FIELD)

00180 .IF NOTE=" "

00190 ..NOTE=MESSAGE

00200 ..ATTRIBUTE(MAP,FIELD)="BRI,CUR"

00210 .ELSE

00220 ..ATTRIBUTE(MAP,FIELD)="BRI"

00230 .END

00240 EXIT

Chapter 3 MANTIS programming language

376 P39-5002-00

PROMPT
The PROMPT statement displays a prompter. MANTIS retrieves the
prompter from the library and displays it. In the case of chained
prompters, MANTIS displays each prompter in the chain. Following the
PROMPT, MANTIS returns control to the next line in the program.

PROMPT [library:]prompter-name

[library:]prompter-name

Description Required. Specifies the name of an existing prompter.

Format 1–33 character text expression

Considerations

♦ If the prompter is in another user’s library, you can access it by
specifying the name of the user in whose library it does reside
[library;]prompter-name.

♦ If the prompter resides in your library, you may specify only the
prompter-name.

♦ This parameter is translated to uppercase upon execution of your
program.

PROMPT

MANTIS Language 377

General considerations

♦ Press ENTER to view the next screen in the prompter. When
prompter information ends, MANTIS returns control to the next line in
the program. You can terminate the PROMPT statement by pressing
the CANCEL key. You can terminate the program running the
PROMPT statement by entering the KILL keyword in the lower left
corner of the screen displaying the prompter. The actual keyword
(KILL) can be changed by the installation. See your Master User for
details.

♦ Prompters are limited to 80 lines. You can chain prompters to
expand their capacity. (Refer to the Prompter Design Facility in
MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for more
information.)

♦ Because program comments consume space in a stored program
and require run-time overhead, put large blocks of comments in a
prompter. Use a PROMPT statement in immediate mode to view
your comments.

♦ See also “KEY” on page 301.

Example The following example shows how the PROMPT statement retrieves and
displays a prompter:

.

.

.

00100 IF REQUEST="?"

00120 .PROMPT"MASTER:FACILITY_HELP"

00130 END

.

.

.

Chapter 3 MANTIS programming language

378 P39-5002-00

RELEASE (Function)
The RELEASE function returns a text string indicating the current
release, environment, and copyright information about the MANTIS
system that is executing.

RELEASE

Description Returns a text string with current release information

Format rrss.lll mm..m copyright . . .

where:

Value Description Example

rr Release 55
ss Service Level 01
lll Maintenance level 007
mm…m Monitor ID (10-bytes fixed length)

CICS,MVS/BATCH,
IMS/DC, IMS/BATCH
VM/CMS,
CMS/BATCH, TSO,
UTM, TIAM/BATCH,
AIM

copyright Copyright notice Legal description

RELEASE (Function)

MANTIS Language 379

Examples

Example Results Comments
RELEASE "5501.007 CICS

MANTIS Copyright
1986, 1987, 1992,
1993, 1995,1997,
1998, 2001 Cincom
Systems, Inc. All
rights reserved."

RELEASE(1,4) "5501" Substringing permitted.

♦ The following example shows how you can determine the RELEASE
level of a running system:

EDIT L1 --- MASTER:MASTER COLUMNS 1 73
COMMAND ===> SHOW RELEASE SCROLL ===> CUR
***** **************** START OF PROGRAM ***********************
***** ***************** END OF PROGRAM ************************

* *
* 5501.007 CICS MANTIS Copyright 1986,1987,1992,1993, 1995,*
* 1997, 1998, 2001 Cincom Systems, Inc. All rights reserved. *
* *
* *
* *
* *

Chapter 3 MANTIS programming language

380 P39-5002-00

RELEASE (Statement)
The RELEASE statement frees RDM’s internal storage for one specific
view or for all views currently opened. It also frees internal storage for
programs loaded with a PROGRAM statement.

RELEASE view name
program name

−
−

�

��
�

��

view-name

Description Optional. Specifies the name (as defined in a previously executed VIEW
statement) of the logical view you want to release.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Considerations

♦ All views remain open until you sign off from MANTIS or until you
perform an explicit RELEASE (with the RELEASEV=N customize
option only).

♦ A RELEASE with a view-name releases only the named view. (See
the first example.) A RELEASE without an argument releases all
open RDM views.

program-name

Description Optional. Specifies the name (as defined in a previously executed
PROGRAM statement) of an external subroutine.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Considerations

♦ RELEASE program-name frees the memory occupied by the
program (loaded with a PROGRAM statement). (See the second
example.)

♦ RELEASE removes the program from the local program chain.

♦ The next DO for program-name will reload the program.

RELEASE (Statement)

MANTIS Language 381

General considerations

♦ When you are accessing multiple logical views, use RELEASE to free
the memory used by the views opened. MANTIS removes all
MARKs and the current position is no longer known to RDM.
However, if you execute GET, INSERT, UPDATE, or DELETE on a
released view, RDM automatically opens that view. You cannot use
RELEASE to assign new SELECT qualifications to the VIEW.

♦ When a RELEASE statement is issued against a program that is no
longer in storage or is in the shared pool, MANTIS ignores this
statement.

♦ See also “PROGRAM” on page 373 and “VIEW” on page 501.

♦ The RELEASE statement frees RDM’s internal storage for one
specific view or for all views currently opened. It also frees internal
storage for programs loaded with a PROGRAM statement.

♦ On a RELEASE view-name, TRAP view ON is in effect and returns a
status of either GOOD or ERROR, as well as the FSI/VSI information
that is returned on the RELEASE (see “TRAP” on page 469 and
“Status functions” on page 517 for more details).

Chapter 3 MANTIS programming language

382 P39-5002-00

Examples

♦ The following example shows how the RELEASE statement is used
to free internal storage for one specific view:

00010 VIEW CUSTOMER("CUST")

00020 DO PROCESS_VIEW(CUSTOMER)

.

.

.

00060 RELEASE CUSTOMER

.

.

.

♦ The following example shows how the RELEASE statement is used
to free internal storage for a program loaded with a PROGRAM
statement:

00010 PROGRAM INFREQUENT("OCCASIONAL")

.

.

.

00050 DO INFREQUENT(A,B,C)

00060 RELEASE INFREQUENT

REPLACE

MANTIS Language 383

REPLACE
The REPLACE statement identifies the library, program name, password,
and description of the executable program that is replaced in your library
as the result of issuing the Compose action on a MANTIS source
program.

If UPPERCASE=N has been specified in the FSE (Full Screen Editor),
you must enter this statement in UPPERCASE mode for it to be
recognized by MANTIS.

REPLACE"[library:] program-name [/password] [/description]"

library:

Description Optional. Specifies the name of the library where the executable
program is replaced.

Default Your sign-on library

Format A MANTIS symbolic name, 1–16 characters in length, followed by a colon
(:) (see “Symbolic names” on page 24)

Considerations

♦ Must be your user library.

♦ Code the REPLACE statement for your library only.

♦ This parameter is translated to uppercase upon execution of your
program.

program-name

Description Required. Specifies the name of the executable program that is replaced
in your library as a result of the Compose action.

Format A MANTIS symbolic name, 1–32 characters in length (see “Symbolic
names” on page 24)

Consideration This parameter is translated to uppercase upon execution of your
program.

Chapter 3 MANTIS programming language

384 P39-5002-00

/password

Description Optional. Specifies the password used to previously replace the
executable program (or the password used to save the program for the
first time).

Default Your sign-on password

Format Must be a standard password, 1–16 characters in length, preceded by a
slash (/); can be upper or lowercase

/description

Description Optional. Specifies the text description of the executable program.

Format Text expression, 1–46 characters in length, preceded by a slash (/); can
be upper or lowercase

Consideration If you specify a description for the REPLACE statement, it becomes the
description for the composed program when the Compose action is
completed.

The description of the REPLACE statement is optional and should be
used for user reference purposes. It is not used to create or update the
description when the executable program is saved or replaced.

REPLACE

MANTIS Language 385

General considerations

♦ The REPLACE statement is optional. If used, it cannot be continued
from one line to the next. Code a single REPLACE statement on a
single line of a MANTIS source program. The REPLACE statement
cannot be coded before the ENTRY statement. The
recommendation is to code the REPLACE statement following the
first ENTRY statement.

♦ For more information on the REPLACE command, refer to MANTIS
Program Design and Editing, OS/390, VSE/ESA, P39-5013.

♦ If you append your source program name with an at sign (@), the
REPLACE statement is not needed. The at sign (@) is the system
default that tells the Compose action to name the composed program
with the same name as the source program without the at sign (@).
The @ symbol is defined by the Master User and can be different for
your installation.

 For example, if you compose CUST_BROWSE@, the resulting
composed program is CUST_BROWSE. If you do not append the at
sign (@) to the source program, supply a REPLACE statement that
specifies the name of the executable program to be replaced. A
source program to be composed without the at sign (@) and without
a REPLACE statement generates an error message.

♦ Double quotes (“”) are required around the parameters of the
REPLACE statement. The colon (:) is required to separate library
and program name, and the slash character (/) is required to
separate password and description as shown.

♦ You can select the REPLACE statement in the Full Screen Editor
with the S (select) line command for n-level editing. For more
information about the S line command and the Compose and
Decompose actions, refer to MANTIS Program Design and Editing,
OS/390, VSE/ESA, P39-5013.

Chapter 3 MANTIS programming language

386 P39-5002-00

♦ The library and program-name arguments for the REPLACE
statement are translated to uppercase upon execution of your
program.

♦ The COMPOSE action will convert the REPLACE statement to a
comment in the composed program.

♦ See also “COMPONENT” on page 153, “CSIOPTNS” on page 165,
and “REPLACE” on page 383.

Example The following example shows how the REPLACE statement identifies the
program that has been replaced by issuing a COMPOSE action on a
MANTIS source program:

00010 ENTRY CUST_INSERT

00020 REPLACE"ACCT:CUST_INSERT/DEPT1234/CUSTOMER RECORD INSERT PROGRAM"

00030 CSIOPTNS"COMMENTS=NO:FORCE=YES:SEQUENCE 5,5"

.

.

.

00520 EXIT

00530 COMPONENT"ACCT:CUS_INIT_FILE_HEADER"

00540 COMPONENT"ACCT:CUS_ERROR_PROC"

00550 COMPONENT"ACCT:CUS_TERMINATE"

RESET

MANTIS Language 387

RESET
The RESET statement backs out a Logical Unit of Work (LUW).
MANTIS rolls back any updates made since the start of a Logical Unit
Work. You can only back out updates when supported by the
teleprocessing system and file system.

RESET

General consideration

 See also “COMMIT” on page 149. For more information about the FSE
COMMIT command, refer to MANTIS Facilities, OS/390, VSE/ESA,
P39-5001.

Example The following example shows the RESET statement backing out a LUW:
00007 WHILE MAINREC<>"END"

00008 .GET MAINREC

00009 .INSERT PARTIAL1

00010 .IF PARTIAL1="ERROR"

00011 ..SHOW"ERROR OCCURRED ON 1ST INSERT":WAIT

00012 .ELSE

00013 ..INSERT PARTIAL2

00014 ..IF PARTIAL2="ERROR"

00015 ...RESET

00016 ...SHOW"ERROR OCCURRED ON 2ND INSERT, 1ST INSERT BACKED-OUT":WAIT

00017 ..ELSE

00018 ...INSERT PARTIAL3

00019 ...IF PARTIAL3="ERROR"

00020RESET

00021SHOW"ERROR OCCURRED ON 3RD INSERT,1ST & 2ND INSERT BACKED-OUT":WAIT

00023 ...ELSE

00024COMMIT

00025SHOW"ALL THREE INSERTS SUCCESSFUL, PROCESSING NEXT RECORD":WAIT

00026 ...END

00027 ..END

00028 .END

00029 END

Chapter 3 MANTIS programming language

388 P39-5002-00

RETURN
Use the RETURN statement to return control from a subroutine, or to
stop execution of a program, before the physical end of the program
(EXIT statement).

RETURN

General considerations

♦ Use the RETURN statement when you want a subroutine to return
control from any line within the ENTRY-EXIT statements. MANTIS
returns control immediately as if the EXIT statement had been
executed.

♦ RETURN in an internal subroutine will return to the statement after
the DO that invoked it.

♦ If you use a RETURN statement in your program at dolevel 0, the
effect is the same as a STOP statement. MANTIS returns to
programming mode if the program was executing while in
programming mode; or, MANTIS returns to your Facility Selection
menu if the program was executing while not in programming mode.

♦ See also “BREAK” on page 136 and “NEXT” on page 335.

Example The following example shows how the RETURN statement returns
control from a subroutine:

10 ENTRY BROWSE

20 .SCREEN MAP1("INDEX")

30 .FILE REC1("INDEX","SERENDIPITY")

40 .GET REC1

50 .WHILE REC1="NEXT"

60 ..CONVERSE MAP1

70 ..IF MAP1="CANCEL"<---- If this condition is TRUE, the RETURN
80 ...RETURN verb will continue logic flow to the
90 ..END EXIT statement (120)
100 ..GET REC1

110 .END

120 EXIT

RND

MANTIS Language 389

RND
The RND function returns a random real number in the range zero to a,
but excluding zero and a.

RND(a)

a

Description Required. Specifies the ending range for the randomizer function.

Format Any valid arithmetic expression

Consideration Should be non-zero for meaningful results.

General consideration

 See also “SEED” on page 398. Without the SEED statement, the
random number generator produces the same sequence of numbers
each time you execute a program. With the SEED statement, the
internal system clock seeds the random number generator.

Chapter 3 MANTIS programming language

390 P39-5002-00

Example The following example shows how the RND function returns random
numbers:

Example Results Comments
RND(10) .1330482773482E-2
RND(1)

RND(1)

RND(1)

RND(1)

RND(1)

RND(1)

.1330482773482E-3

.2361423983238

.8452904769219

.7970522423274

.5704303598031E-1

.7223061672411

The series will always
be the same unless
you execute a SEED
statement.

SEED

RND(1)

RND(1)

.1898911846801

.5011424054391

SEED sets a random
starting number.

RND(-1)

RND(-1)

-.133048277E-3

-.236142398

X ROUNDED(0)=

RND(1000)

X ROUNDED(0)=

RND(1000)

1

236

RND(0) 0 Exception case.

RUN

MANTIS Language 391

RUN
The RUN command executes the program currently in the programming
mode work area.

A program runs until one of the following occurs:

♦ The program encounters an error.

♦ The program encounters one of the following statements:

- CHAIN

- EXIT

- RETURN

- STOP

♦ The program runs out of statements.

♦ You issue a KILL command.

RUN [n]

n

Description Optional. Specifies the statement number where you want the run to
begin.

Default First line in your program

Format Arithmetic expression that evaluates to a value 1–n, where n is the
maximum line number in your program

Consideration MANTIS uses only the integer portion of n.

Chapter 3 MANTIS programming language

392 P39-5002-00

General considerations

♦ RUN with no parameter. MANTIS erases definitions and values for
all symbolic names, except for ENTRY symbolic names, in the
current program’s data area and executes the program from the
lowest numbered statement.

♦ RUN n. MANTIS retains all variables and arrays, as well as their
current values, from prior RUN executions and executes the current
program from the specified statement number. Use this form of the
RUN command to continue a program after it has been halted by an
error condition or by a STOP statement. This is useful for interactive
testing and debugging.

♦ The RUN command is supported at the second level of edit. That is,
a program that is being edited at the second level can be executed
using the RUN command. RUN works the same in a second level
edit as at the top level except for the four differences listed below:
- If a second-level edit program containing an external DO also

contains an error within the external DO program (or is KILLed),
the current program replaces the second-level program being
edited, and the edit level is unchanged.

- If the second-level edit program contains a CHAIN, the chained-
to program becomes the second-level program and any changes
are lost.

- Issuing a LOAD or NEW command automatically ends the
second-level edit session. All changes are lost. The edit level of
the new program will be at the top level. (MANTIS sends a
warning message if you issue LOAD or NEW.)

- A CANCEL at the second level causes MANTIS to return to the
top level. The END, MENU, and LOGOFF commands
(described in MANTIS Program Design and Editing, OS/390,
VSE/ESA, P39-5013) also return MANTIS to the top level, saving
any changes made at the second level.

♦ The program must be logically correct (balanced ENTRY-EXIT,
WHILE-END, etc.) before you can RUN it.

♦ See also “STOP” on page 452.

Example The following example shows how the RUN statement is used to execute
the program currently in the work area:
===> RUN

00010 SHOW"WHAT IS THE CAPITAL AMOUNT?"

WHAT IS THE CAPITAL AMOUNT?

SCREEN

MANTIS Language 393

SCREEN
The SCREEN statement specifies a screen design (screen) that you use
in your program.

]. . . [PREFIX]):]([[,
[PREFIX]):]([SCREEN

name2,screenlibrary2name2
name1,screenlibrary1name1
−

−

name

Description Required. Specifies the name used to refer to a screen in subsequent
CONVERSE statements.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Considerations

♦ When the symbolic name is previously defined, MANTIS bypasses
this definition.

♦ After a CONVERSE, the symbolic name contains the mnemonic for
the last key pressed.

Chapter 3 MANTIS programming language

394 P39-5002-00

[library:]screen-name

Description Required. Specifies the name of the screen as saved during Screen
Design.

Format 1–49 character text expression that evaluates to a valid Screen Design
name

Considerations

♦ If the screen is in another user’s library, you can access it by
specifying the name of the user, followed by a colon and the screen
name, as follows:

 library:screen-name

 If the screen resides in your library, you can specify only the screen
name.

♦ If you want this entity to be HPO bound, the library name is required,
even if it is in your own library.

♦ This parameter is translated to uppercase upon execution of your
program.

♦ If this parameter is used, the colon (:) is required.

SCREEN

MANTIS Language 395

PREFIX

Description Optional. Specifies whether MANTIS places the symbolic name and an
underscore before all field names associated with this screen. If you
code:
10 SCREEN BIN("BOTTLES",PREFIX)

and the screen design BOTTLES had a field named VOLUME, the
program would refer to that field now as BIN_VOLUME.

Consideration See the PREFIX considerations for “FILE” starting on page 222.

General considerations

♦ A SCREEN statement is bindable only when the user-name is
provided, even if the screen resides in your own library.

♦ Arguments for the SCREEN statement are translated into uppercase
upon execution of your program.

♦ See also “CONVERSE” on page 157.

Example The following example shows how the SCREEN statement specifies a
screen design that is used:
00020 .FILE RECORD("INDEX","SERENDIPITY",16)

00030 .SCREEN MAP("INDEX")

00040 .WHILE RECORD<>"END"AND MAP<>"CANCEL"

00050 ..CLEAR MAP:BUFFER=1

00070 ..GET RECORD("WILLIAMS")LEVEL=BUFFER

00080 ..WHILE RECORD<>"END"AND BUFFER<17

00090 ...BUFFER=BUFFER+1

00100 ...GET RECORD LEVEL=BUFFER

00110 ..END

00120 ..CONVERSE MAP

00130 .END

Chapter 3 MANTIS programming language

396 P39-5002-00

SCROLL
The SCROLL statement allows you to set the scrolling mode of the
terminal or to specify (within your program) window-mode scrolling
increments for PF keys.

SCROLL
OFF
ON
[][,]row col

�

	

�

�

OFF

Description Optional. Specifies that data displayed with a SHOW statement scrolls
from top to bottom on the screen.

Format Must be coded exactly as shown

Consideration Data displayed with SCROLL OFF overwrites the oldest line on the
screen. The display starts at the top of the screen and the last line of
output appears in high intensity. This can be used to minimize the
amount of data transmitted to the terminal.

ON

Description Optional. Specifies that all data displayed with a SHOW statement
appear at the bottom of the screen. All previous lines are bumped up by
one line and the top line is lost.

Format Must be coded exactly as shown

Consideration ON is the default value if no parameter is entered.

row

Description Optional. Specifies window-mode row increment value. The increment
value is not altered if you supply a zero value or no data.

Format Arithmetic expression that evaluates to a value in the range of 0 through
255. Mantis uses only the integer part of row.

Default The number of displayed rows on the terminal.

SCROLL

MANTIS Language 397

col

Description Optional. Specifies window-mode column increment value. The
increment value is not altered if you supply a zero value or no data.

Format Arithmetic expression that evaluates a value in the range of 0 through
255. Mantis uses only the integer part of col.

Default The number of displayed columns on the terminal.

General considerations

♦ Scroll is automatically ON when the SCROLL statement is not used
in the program. If you use the statement, you must supply one of the
parameters.

♦ Use SCROLL row,col to establish meaningful scroll values for the
map set you are about to converse. For example, you may want to
scroll to a specific row or column.

♦ See also “TERMSIZE” on page 456.

Example The following example shows how the SCROLL statement is used to set
the scroll mode of the terminal:
00030 SHOW"PLEASE ENTER MINIMUM AND MAXIMUM RANGE "

00040 SHOW"OF NUMBERS TO BE SELECTED.

00050 SHOW"INPUT IN THE FORMAT OF MIN;MAX (EX. 999;999)"

00060 OBTAIN MIN,MAX

00070 CLEAR

00080 SCROLL OFF

00090 GET REC1

Chapter 3 MANTIS programming language

398 P39-5002-00

SEED
The SEED statement seeds the random number generator so that it
generates a new sequence of random numbers.

SEED

General considerations

♦ Without the SEED statement, the random number generator
produces the same sequence of numbers each time you execute a
program. With the SEED statement, the internal system clock seeds
the random number generator.

♦ See also “RND” on page 389.

Example The following example shows how the SEED statement is used to set the
random number generator:
00010 SEED

00020 A=10

00030 B=RND(A)

SGN

MANTIS Language 399

SGN
The SGN function returns the algebraic sign of a numeric expression.
SGN returns -1 if a is less than 0, 0 if a equals 0, and +1 if a is greater
than 0.

SGN(a)

a

Description Required. Specifies a numeric expression whose sign you want to
determine.

Format Specifies any valid numeric expression

General consideration

 See also “ABS” on page 86.

Examples The following examples show what the SGN function returns for various
input values:

Example Results Comments
SGN(-14) -1 (TRUE) Any non-zero value is

TRUE.
SGN(.00001) +1 (TRUE)
SGN(A*B) 0 (FALSE) When A or B is zero,

FALSE is returned.
SGN(1.4E-17) +1 (TRUE)

Chapter 3 MANTIS programming language

400 P39-5002-00

SHOW
The SHOW statement displays and formats data on a screen. MANTIS
outputs the specified data item(s) on the screen according to the scrolling
method specified. MANTIS locates these data items on the line
according to the AT, ‘,’ and ‘;’ options specified.

SHOW ,
; ,

; . . . ,
;

where each is: AT() ,
;

x1 x2 xn

xn tab data - item

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�
	

�
�

�
�
�

�
�
�

�

�
	

�
�

AT (tab)

Description Optional. Specifies the column where the data begins.

Format Arithmetic expression that evaluates to a value in the range 1–n, where n
is the maximum column number for your terminal

Considerations

♦ MANTIS uses only the integer portion of tab.

♦ If you specify the AT clause, MANTIS outputs the data beginning at
the character position specified by tab.

♦ If an AT clause causes one data item to overlap an existing data
item, or is less than the current column position, MANTIS skips to the
next line with the second data item in the specified position, followed
by any subsequent data items in the statement.

data-item

Description Optional. Specifies the data item(s) you want displayed.

Format Arithmetic, text, or DBCS expression

Consideration You can specify different types of data items in a single SHOW
statement.

SHOW

MANTIS Language 401

General considerations

♦ A SHOW statement with no parameter returns a blank line.

♦ If you enter a semicolon between data items, MANTIS returns one
blank space between them.

♦ If you enter a comma between data items, MANTIS returns one item
to a screen zone. Screen zones are 13 characters in size. The first
zone starts in column 1, the next in column 14, then 27, and so on.
MANTIS left-justifies data items and fills extra positions with spaces.
If an item contains more than 13 characters, it continues into the next
zone. The next data item begins in the following zone.

♦ MANTIS uses the entire terminal width to display the SHOW output.

♦ MANTIS displays significant digits for a numeric data item. Zero
shows as a single blank. If needed, MANTIS displays a numeric
value in E notation. If you want numeric data formatted a certain way,
you can use the FORMAT function.

♦ If the SHOW statement ends with a data item, MANTIS terminates
the line, and the next SHOW starts a new line of output. If the
SHOW statement ends with a comma or semicolon, MANTIS
continues the line with the next SHOW.

♦ If your SHOW statement ends with a semicolon (;), MANTIS displays
the data in the Message Line at the next CONVERSE, WAIT, or
OBTAIN. Subsequent SHOWs continue the line. See “Enhanced
screen and program design” on page 555 for an illustration of the
message line.

♦ To remove data that is already set by SHOW and is terminated by a
semicolon (;), but has not yet been sent to a CONVERSE, either
execute a CLEAR or a SHOW with a null line (SHOW “”).

♦ If you code a SHOW in an external program, and the CONVERSE is
in the calling program, either code a SHOW before the DO statement
in the calling program or have your Master User set the
customization option ADAII=Y.

♦ If you use the semicolon with the SHOW (as a command) in Batch
MANTIS, you must change the DELIMITER parameter from “;” to
something else in your Batch MANTIS job. Refer to MANTIS
Facilities, OS/390, VSE/ESA, P39-5001, for information on using
Batch MANTIS.

Chapter 3 MANTIS programming language

402 P39-5002-00

♦ When the screen fills up (for example, with 20 lines on a 24 line
terminal), MANTIS sends the lines to the terminal. To avoid
overwriting data, you must execute a WAIT or OBTAIN before
issuing PROMPT or CONVERSE.

♦ The lines are also sent to the terminal when MANTIS executes a
WAIT, OBTAIN, or STOP/KILL.

♦ The Printer Write and the Terminal Write Exits can affect this
statement. See your Master User for details.

♦ MANTIS reserves four lines when SHOWs are used to build an
unformatted display for the screen or printer. Two lines are reserved
at the top of the output display for a heading (specified through the
HEAD statement), and two lines are reserved at the bottom of the
output display for messages and commands (e.g., KILL). On a
model-2 terminal with 24 lines, a maximum of 20 lines can appear on
an unformatted display generated via SHOWs. Formatted displays
using screen design and CONVERSE statements are necessary to
utilize the full number of lines available on the terminal or printer.

♦ There are three ways to obtain output in the Full Screen Editor from
the following SHOW command:

SHOW x1, x2 . . .

- Where the result from x1, x2, . . ., is less than 54 characters, the
output is displayed in the EDIT==> field.

- Where the result is greater than 54 characters, the output is
displayed in a window (5 rows by 66 columns) at the bottom right-
hand side of the screen. MANTIS displays up to 330 characters
in this window and truncates any additional characters.

- A WAIT displays all SHOWs that have not been sent to the
terminal (for statements in a running program).

♦ See also “CLEAR” on page 145, “FORMAT” on page 230, “OBTAIN”
on page 341, “PRINTER (Function)” on page 370 (that determines
how the lines display in your program), “PRINTER (Statement)” on
page 371, “SCROLL” on page 396, and “WAIT” on page 506.

SIN

MANTIS Language 403

Example The following example shows how the SHOW statement sets up data on
an unformatted screen:
00010 FILE REC("CUST_FILE",PASSWORD)

00020 HEAD"CUSTOMER LIST"

00030 GET REC

00040 WHILE REC<>"END"

00050 .SHOW NUMBER,LAST_NAME,FIRST_NAME

00060 .GET REC

00070 END

SIN
The SIN function returns the sine of a where a is in radians.

SIN(a)

a

Description Required. Specifies the angle whose sine is to be returned.

Format Any valid arithmetic expression

Consideration If the angle is in degrees, it must be converted to radians. See “PI” on
page 367 for how to do this.

General consideration

 See also “ATN” on page 94, “COS” on page 164, “SIN” on page 403, and
“TAN” on page 454.

Example The following example shows how the SIN function returns the sine of an
arithmetic expression:

Example Results Comments
SIN(100) -.506365641
SIN(0) 0
SIN(PI/4) .7071067811865

Chapter 3 MANTIS programming language

404 P39-5002-00

SIZE
The SIZE function returns the maximum or current length of a field or the
size of a text or DBCS expression. It can also return the number of
defined dimensions for a field or array, as well as the number of
occurrences for a specific dimension of an array.

)

"BYTe" ,
 ,

DIM"",
MAX"",

 (SIZE
�
�
�
�

�

�

�
�
�
�

�

�

−

length
n

namefield

SIZE (t)

field-name

Description Required. Specifies the name of a field or an array. Datatype is TEXT,
KANJI, BIG, or SMALL. This also works on symbolic names that return
text status (INTERFACE, SCREEN, FILE, ACCESS, TOTAL, and VIEW).

Consideration Must be a standard MANTIS symbolic name.

t

Description Required. Specifies a text or DBCS expression whose size you want to
determine.

Format A valid text or DBCS expression

Consideration None of the second operands may be used with this format.

SIZE

MANTIS Language 405

"MAX"

Description Optional. Returns the maximum length (in characters) of a text or DBCS
field; can be entered in either lower or uppercase.

Consideration Invalid for numeric fields.

"DIM"

Description Optional. Returns the number of defined dimensions for a field; can be
entered in either lower or uppercase.

n

Description Optional. Returns the number of occurrences for the nth dimension of a
field.

Format An arithmetic expression evaluating to 1 or 2

Chapter 3 MANTIS programming language

406 P39-5002-00

"BYTelength"

Description Optional. Returns the current bytelength of the specified string variable
(including shift codes).

Considerations

♦ Invalid for numeric fields.

♦ Arrays must have an occurrence number.

♦ Bytelength can be abbreviated BYT.

♦ The results are the same whether or not bytelength is specified if the
string field contains only single byte characters (that is, no Shift-in
and Shift-out and/or double byte characters).

General considerations

♦ If you omit the second operand, the value returned is the current size
of the string expression (t or field-name), in characters.

♦ If you specify the n parameter and the nth dimension of the field does
not exist, MANTIS returns a value of zero.

♦ Fields are 2-dimensional if the second dimension is greater than 1,
regardless of whether the first dimension is one. That is, MANTIS
treats BIG VARIABLE (10,1) as equivalent to BIG VARIABLE (10).
The following table provides some examples:

 (variable,"DIM") (variable,1) variable,2)
BIG VARIABLE 0 0 0
BIG VARIABLE(10) 1 10 0
BIG VARIABLE(1,10) 2 1 10
BIG VARIABLE(5,20) 2 5 20
TEXT VARIABLE(3) 0 0 0
TEXT VARIABLE(10,30) 1 10 0

SIZE

MANTIS Language 407

♦ This function can be used to set level values that correspond to
screen repeated fields or as limits when processing an array/matrix.
It is also useful for dissimilarity debugging for dimensions (see
“Dissimilarity debugging” on page 513 and the third and fourth
examples below).

♦ MANTIS truncates trailing blanks for text fields when reading in from
external files (ACCESS, INTERFACE, TOTAL, and VIEW), and
MANTIS adds trailing blanks when retrieving external files.

♦ Arguments for the SIZE statement are translated to uppercase upon
execution of your program.

♦ Refer to MANTIS Facilities, OS/390, VSE/ESA, P39-5001, for
information on creating fields of 255 repeats.

Examples The following examples show the SIZE function:
00010 BIG A

00020 SMALL B(6),C(4,5)

00030 TEXT D(10),F(4,200)

00040 D="CANCEL"

00050 F(1)="PF3"

00060 KANJI K(8)

00070 PAD K

Example Results Comments
SIZE(D) 5 Current length
SIZE(F(1)) 3 Current length
SIZE(F(2)) 0 NULL
SIZE(D,"MAX") 10
SIZE(C,"DIM") 1
SIZE(F,"DIM") 2
SIZE(B,1) 6
SIZE(C,1) 4
SIZE(C,2) 5
SIZE(F,1) 4
SIZE(K,"BYT") 16

Chapter 3 MANTIS programming language

408 P39-5002-00

♦ The following example returns the number of repeats allowed on a
terminal (when a repeat factor of 255 is specified, see Screen Design
in MANTIS Facilities, OS/390, VSE/ESA, P39-5001). Assume
FIELDA is defined on SCREEN1 with 255 vertical repeats. Also
assume the same field is defined in FILE1.

00010 SCREEN MAP("SCREEN1")

00020 LIMIT=SIZE(FIELDA,1) Limit now contains the
00030 FILE REC("FILE1","PASSWORD",LIMIT) number of repeats
00040 I=1 possible on the
00050 GET REC LEVEL=I terminal where the
00060 WHILE I<LIMIT AND REC<>"END" application is now
00070 .I=I+1 running.
00080 .GET REC LEVEL=I

00090 END

 The defined map is now filled to the maximum possible number of
repeats for that terminal.

♦ The following example shows how to use SIZE in dimension
dissimilarity debugging. For example, when you receive the error
message regarding dissimilar dimensions, you can determine the
existing dimensions of the variable NAME.

 If NAME is numeric (BIG or SMALL), enter:
SHOW SIZE(NAME,"DIM"),SIZE(NAME,1)

 The previous statement shows the dimensions and maximum
subscript value currently defined for NAME. If NAME is TEXT or
DBCS/KANJI, enter:

SHOW SIZE(NAME,"DIM"),SIZE(NAME,1),SIZE(NAME,"MAX")

 The previous statement shows the dimensions, the number of rows
(first dimension), and maximum length currently defined for NAME.

SIZE

MANTIS Language 409

♦ The following examples show how “BYT” returns the current
bytelength of the specified string:

In the following examples, < means SO (Shift-out), and > means SI
(Shift-in).

00010 MIXMODE ON

00020 TEXT ALPHA(20),BETA(20)

00030 KANJI GAMMA(20)

00040 ALPHA="< 1 2 >A"

00050 BETA="A<>B"

00060 GAMMA=G"< 1 2 >"

00070 A=SIZE(ALPHA,"BYT")

00080 B=SIZE(BETA,"BYT")

00090 C=SIZE(GAMMA,"BYT")

A, B, and C have values 7, 4, and 6.

 If a second parameter is not specified, the current number of
characters is returned. In the previous example, if you change the
values to:

00070 A=SIZE(ALPHA)

00080 B=SIZE(BETA)

00090 C=SIZE(GAMMA)

 A, B, and C have values of 3, 2, 2.

Chapter 3 MANTIS programming language

410 P39-5002-00

SLICE
The SLICE statement limits the number of statements you can execute
before MANTIS suspends your program.

�
�
�

�
�
�

CLEAR
 SLICE

n

n

Description Required. Specifies the number of statements a program can execute
before MANTIS suspends it (the SLICE limit). In some environments,
MANTIS suspends program execution and control returns to the TP
monitor. Other environments do not support program suspension. In
these circumstances, the program continues until the SLOT limit is
reached.

Format Arithmetic expression

Consideration MANTIS uses only the integer portion of n. n must be 1–32767,
inclusive.

CLEAR

Description Resets the SLICE counter to 0.

General considerations

♦ Every time a program executes, it can execute only the number of
statements that SLICE specifies before MANTIS suspends it to give
other programs and users an opportunity to run. When the program
begins execution again, MANTIS provides another “SLICE” number
of statements. This prevents the MANTIS application from
monopolizing system resources.

♦ The default SLICE value is in the User Profile. You may wish to omit
SLICE statements from your programs and tune the value in the User
Profile for all programs.

SLICE

MANTIS Language 411

♦ Program suspension is not supported or applicable in all
environments. Some TP Monitors (such as CICS) provide this
support, and MANTIS suspends program execution in these
environments each time a “SLICE” number of statements has been
executed. Other environments (IMS and Batch) do not support
program suspension. In these environments, the SLICE value is
reset, and the program continues to execute.

♦ If you omit the SLICE statement from a program, MANTIS assumes
the value specified by your Master User in your User Profile.

♦ Note that specifying a large number in this statement or clearing
SLICE from within your program can adversely affect performance of
the system.

♦ MANTIS I/O statements have a slice value of 20 because of their
relatively high demand on system resources. These statements are:
GET, UPDATE, INSERT, DELETE, CALL, and EXEC_SQL.

♦ If you set SLICE and SLOT equal to one, MANTIS executes your
program one statement at a time.

♦ The SLICE statement cannot be set at any DOLEVEL other than 0. It
must be large enough to accommodate printing large reports
because when OUTPUT PRINTER is used, CONVERSE statements
do not reset SLICE and SLOT.

♦ The product of SLICE and SLOT determines the number of
statements your program can execute before it receives a program
loop message.

♦ SLICE counter is reset to 0 at terminal I/O or at SLICE CLEAR.

♦ SLICE could be required for programs that execute a large number of
statements between terminal I/O.

♦ Setting SLICE and SLOT to large numbers can adversely impact the
performance of your overall online system or can lead to CICS task
ABENDS instead of recoverable MANTIS Potential Program Loop
messages.

♦ See also “COMMIT” on page 149 and “SLOT” on page 413.

Chapter 3 MANTIS programming language

412 P39-5002-00

Example The following example shows the SLICE statement setting a limit of
program statements that can be reached before MANTIS suspends the
program:
00032 ENTRY HOUSEKEEPING

00033 .FILE MAINREC("FILE1",PASSWORD1)

00034 .FILE PARTIAL1("PARTIAL1",PASSWORD2)

00035 .FILE PARTIAL2("PARTIAL2",PASSWORD3)

00036 .FILE PARTIAL3("PARTIAL3", PASSWORD4)

00037 .TRAP PARTIAL1 ON

00038 .TRAP PARTIAL2 ON

00039 .TRAP PARTIAL3 ON

00040 .SLICE 1000

00041 .SLOT 20

00042 EXIT

SLOT

MANTIS Language 413

SLOT
The SLOT statement specifies how many times a program can reach the
SLICE limit before MANTIS returns “POTENTIAL PROGRAM LOOP
ENCOUNTERED”. When you receive this message, you can press
ENTER to continue running the program or use the KILL command to
terminate execution.

�
�

�
�
�

�

CLEAR
 SLOT

n

n

Description Required. Specifies the number of times a program can reach the SLICE
limit before MANTIS returns a potential program loop error message.

Format Arithmetic expression between 0–32767, inclusive

Consideration MANTIS uses only the integer portion of n.

CLEAR

Description Resets the SLOT counter to 0.

Chapter 3 MANTIS programming language

414 P39-5002-00

General considerations
♦ When the number of SLOT counts is reached, MANTIS gives you a

chance to break into a program that might be in an endless loop.

♦ The default SLOT value is in the User Profile. You may wish to omit
SLOT statements from your programs and tune the value in the User
Profile, which affects all programs.

♦ MANTIS resets SLICE and SLOT counters to zero every time a
terminal output is executed on a screen. Output to a printer does not
reset the SLICE and SLOT counters.

♦ When SLOT limit is set to 0, the SLICE value is not checked and no
potential program loop error messages are issued when running
under Batch MANTIS or CICS background. Setting SLOT to 0 can
be used to allow long running jobs to execute in batch mode. TIME
limit can be specified by JCL or shop standards to control looping
tasks. If SLOT is set to 0 for an online program, it is equivalent to
SLOT 1.

♦ The SLOT statement is ignored in an externally done program.

♦ If you set SLOT and SLICE limit equal to one, MANTIS executes your
program one statement at a time.

♦ The SLOT statement cannot be set on any DOLEVEL other than 0. It
must be large enough to accommodate printing large reports
because when OUTPUT PRINTER is used, CONVERSE statements
no longer reset SLICE and SLOT.

♦ See also “COMMIT” on page 149 and “SLICE” on page 410.

Example The following example shows the SLOT statement setting a limit of
program statements that can be reached before MANTIS issues a
potential loop warning message:
00032 ENTRY HOUSEKEEPING

00033 .FILE MAINREC("FILE1",PASSWORD1)

00034 .FILE PARTIAL1("PARTIAL1",PASSWORD2)

00035 .FILE PARTIAL2("PARTIAL2",PASSWORD3)

00036 .FILE PARTIAL3("PARTIAL3",PASSWORD4)

00037 .TRAP PARTIAL1 ON

00038 .TRAP PARTIAL2 ON

00039 .TRAP PARTIAL3 ON

00040 .SLICE 1000

00041 .SLOT 20

00042 EXIT

SMALL

MANTIS Language 415

SMALL
The SMALL statement names and gives dimensions to numeric
variables. MANTIS creates a 4-byte numeric floating-point field or an
array of 4-byte fields and associates it with the name you specify.

SMALL name1[(n1[,n2])]

 [,name2[(n1[,n2])] . . .]

name

Description Required. Specifies the name of the numeric variable.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Consideration When the symbolic name is previously defined, MANTIS bypasses this
definition.

n1

Description Optional. Specifies the number of elements in a 1-dimensional array, or
the number of rows in a 2-dimensional array.

Default 1

Format Arithmetic expression that evaluates to a positive integer in the range 1–
255

Consideration MANTIS rounds n to an integer value.

n2

Description Optional. Specifies the number of columns in a 2-dimensional array.

Default 1

Format Arithmetic expression that evaluates to a positive integer in the range 1–
255

Consideration MANTIS rounds n to an integer value.

Chapter 3 MANTIS programming language

416 P39-5002-00

General considerations

♦ A SMALL variable contains a zero, upon initial definition.

♦ If n2 is not specified, or is specified as 1, a 1-dimensional array is
allocated. If n is not specified, a small scalar variable is allocated.

♦ Use BIG (instead of SMALL) to hold numbers involving fractions or
more than 6 integer digits.

♦ You can use up to 2048 variables in each MANTIS program.

♦ See also “BIG” on page 134, “KANJI (Kanji users only)” on page 298,
“TEXT” on page 457, and “Numeric data” on page 41.

Examples The following examples show how the SMALL statement names and
gives dimensions to numeric variables.
00010 X=15

00020 SMALL ALPHA(64,3),BETA(12) Statements 20 and 30 are equivalent.
00030 SMALL ALPHA(8**2,SQR(9)),BETA(X-3)

SOURCE

MANTIS Language 417

SOURCE
The SOURCE statement is coded in an executable program to name the
library, program, password, and description of the source program to be
created or replaced in your library by the Decompose action.

If UPPERCASE=N has been specified in the FSE (Full Screen Editor),
you must enter this statement in UPPERCASE mode for it to be
recognized by MANTIS.

SOURCE"[library:] program-name [/password] [/description]"

library:

Description Optional. Specifies the name of the library where the source program is
created or replaced.

Default Your sign-on library.

Format A MANTIS library name, 1–16 characters in length, followed by a colon (:)
(see “Symbolic names” on page 24)

Consideration Must be the current signed on library.

program-name

Description Required. Specifies the name of the source program that the
Decompose action updates with the same changes that you made to the
executable (composed) program.

Format A MANTIS program name, 1–32 characters in length, (see “Symbolic
names” on page 24)

/password

Description Optional. Specifies the password used to replace the source program
previously (or the password used to save the program for the first time).

Default Your sign-on password.

Format A MANTIS symbolic name, 1–16 characters in length, preceded by a
slash (/), can be entered in lower or uppercase (see “Symbolic names” on
page 24)

Chapter 3 MANTIS programming language

418 P39-5002-00

/description

Description Optional. Specifies the text description of the source program.

Format Text expression, 1–46 characters in length, preceded by a slash (/), can
be entered in lower or uppercase

Consideration If you specify a description in the SOURCE statement, it becomes the
description of the source program when the Decompose is issued.

The description of the SOURCE statement is optional and is used for
user reference purposes. It is not used to create or update the
description when the source program is saved or replaced.

General considerations

♦ Code the SOURCE statement for your library only.

♦ Code a single SOURCE statement in a MANTIS composed program
when MANTIS source code changes. The recommendation is to
code the SOURCE statement following the first ENTRY statement. If
the SOURCE statement is not included in the composed program,
and you change source code, the source program is not updated with
the changes.

♦ The SOURCE statement must be nominated to be recognized by the
Decompose action. Nominate a SOURCE statement by coding the
at sign (@) character, (or another installation defined character)
following the vertical bar (|) in the SOURCE statement, for example
|@SOURCE.

♦ The SOURCE statement is required as shown below if you change
MANTIS source code in the composed program and you want to
keep those source changes when you issue the Decompose.

MANTIS source
changes?

Component
changes?

|@SOURCE statement
required?

Yes No Yes
No Yes No
No No No
Yes Yes Yes

SOURCE

MANTIS Language 419

♦ Double quotes (“”) are required around the SOURCE statement as
shown in the previous example. The colon (:) is required to separate
library and program name, and the slash character (/) is required to
separate password and description as shown.

♦ The SOURCE statement cannot be continued from one line to the
next. Be sure the statement is coded completely on a single line in
the source program.

♦ You can select the SOURCE statement in the Full Screen Editor with
the S (select) line command for n-level editing. For more information
about the S line command, refer to MANTIS Program Design and
Editing, OS/390, VSE/ESA, P39-5013.

♦ For more information about the use of the SOURCE statement and
the Compose and Decompose actions, refer to MANTIS Program
Design and Editing, OS/390, VSE/ESA, P39-5013.

♦ See also “COMPONENT” on page 153, “CSIOPTNS” on page 165,
and “REPLACE” on page 383.

Examples
♦ The following examples show the COMPONENT statement as it

appears in a source program, a composed (executable) program,
and nominated in a composed (executable) program for the
Decompose action.

Example Comments
00010 SOURCE"ACCT:CUST_ERROR_PROC" Before Compose.
00010 |*SOURCE"ACCT:CUST_ERROR_PROC" Composed (executable)

program after Compose.
00010 |@SOURCE"ACCT:CUST_ERROR_PROC" Composed (executable)

program, component
nominated for update in
Decompose.

♦ The following example shows how the SOURCE statement names

the executable program that is created or replaced by the
Decompose action:

00010 ENTRY CUST_INSERT
00020 |@SOURCE"ACCT:CUST_INSERT@/DEPT1234/CUSTOMER RECORD INSERT - SOURCE"

.

.

.
00520 EXIT

Chapter 3 MANTIS programming language

420 P39-5002-00

SQLCA (Function)
SQLCA is both a statement and a function. The SQLCA built-in function,
shown below, returns data from the SQL Communication Area (SQLCA).
The SQLCA statement stores data from the MANTIS program into the
SQL Communication Area (SQLCA).

SQLCA(sqlca_element_name)

sqlca_element_name

Description Required. Specifies the element of the SQLCA that is to be transferred.

Format A text expression that evaluates to one of the SQLCA element names in
the following tables

Consideration Element names must be selected from the list for the SQL database in
use. See SQLCA elements in the “DB2” table on page 422 or SQLCA
elements in the “SUPRA” table on page 423.

SQLCA (Function)

MANTIS Language 421

General considerations

♦ Some SQLCA elements are not present in the native SQL SQLCA.
These are extensions to the SQLCA unique to MANTIS. They are
DBTYPE, DBNAME, MSGTEXT, and SQLISL. DBTYPE returns the
SQL database currently in use (“DB2”, “SQL/DS" or “SUPRA”) to the
MANTIS program. DBNAME returns the name of the SUPRA
database currently in use. MSGTEXT returns the SQL error
message text associated with the current SQLCA SQLCODE.
SQLISL allows the DB2 for VSE and VM (formerly SQL/DS)
ISOLATION parameter to be set by the MANTIS program.

♦ If an SQLCA TEXT element is moved to a MANTIS variable of
shorter length (e.g., an 8-character SQLCA element to a 6-character
MANTIS variable) the right-most characters are truncated.

♦ For further information, refer to MANTIS DB2 Programming, OS/390,
VSE/ESA, P39-5028, or MANTIS SUPRA SQL Programming,
OS/390, VSE/ESA, P39-3105.

♦ See also “EXEC_SQL-END” on page 217, “SQLDA (Function)” on
page 426, and “SQLDA (Statement)” on page 432.

Example The following example shows how data is retrieved from the SQLCA by
the SQLCA built-in function. Line 160 checks the SQLCA SQLCODE to
determine if all table rows have been fetched.
00130 EXEC_SQL

00140 .| FETCH C1 INTO :EMPL_NAME, :EMPL_NAME

00150 END

00160 IF SQLCA("SQLCODE")=100

00170 .DO END_OF_DATA

00180 END

Chapter 3 MANTIS programming language

422 P39-5002-00

The following table lists the SQLCA elements in DB2:

Element
name

MANTIS compatible
datatype

Contents / considerations

Updateable?

SQLCAID TEXT(8) Eyecatcher. Set by SQL. No
SQLCABC BIG Length of SQLCA. Set by

SQL.
No

SQLCODE BIG Code indicating the results of
SQL statement execution.

Yes

SQLERRM TEXT(70) Tokens for insertion into SQL
error message text. The
vertical bar (|) replaces
hexadecimal “FF” as the
separator character.

Yes

SQLERRP TEXT(8) SQL diagnostic data. Yes
SQLERRDn BIG SQL diagnostic data. n ranges

between 1–6.
Yes

SQLWARNn TEXT(1) SQL warning flags. In DB2, n
ranges from 0–7. In DB2 for
VSE and VM (formerly
SQL/DS), n ranges from 0–A.

Yes

SQLEXT TEXT(8) DB2
TEXT(5) SQL/DS

Reserved for SQL. Yes

DBTYPE* TEXT(6) Returns SQL database in use.
Unique to MANTIS.

No

MSGTEXT* TEXT(254) Returns SQL error message
text. Unique to MANTIS

No

SQLISL* TEXT(1) DB2 for VSE and VM
(formerly SQL/DS) variable.
Specifies ISOLATION
parameter for Access
Modules. Not supported by
DB2.

Yes

* These elements are MANTIS extensions to the SQLCA. They are not present in the SQL SQLCA.

SQLCA (Function)

MANTIS Language 423

The following table lists SQLCA elements in SUPRA:

Element
name

MANTIS compatible
datatype

Contents / considerations

Updateable?
SQLCAID TEXT(8) Eyecatcher. Set by SQL. No
SQLCABC BIG Length of SQLCA. Set by

SQL
No

SQLCODE BIG Code indicating the results of
SQL statement execution.

Yes

SQLERRML BIG Length of SQL error message
text.

No

SQLERRMC TEXT(70) SQL error message text. Yes
SQLERRP TEXT(8) SQL diagnostic data. Yes
SQLERRDn BIG SQL diagnostic data. n

ranges from 1–6.
Yes

SQLWARNn TEXT(1) SQL warning flags. n ranges
from 0–F.

Yes

DBTYPE* TEXT(6) Returns SQL database in use. No
DBNAME* TEXT(64) Returns or sets SUPRA

database name.
Yes

*These elements are MANTIS extensions to the SQLCA. They are not present in the SQL SQLCA.

Chapter 3 MANTIS programming language

424 P39-5002-00

SQLCA (Statement)
The SQLCA statement stores data from the MANTIS program into the
SQL Communication Area (SQLCA). The SQLCA built-in function
transfers data from the SQLCA to the MANTIS program.

The SQLCA statement is shown below.

SQLCA(sqlca_element_name) = expression

sqlca_element_name

Description Required. Specifies the element of the SQLCA that is to receive data.

Format A expression that evaluates to one of the SQLCA element names in the
preceding tables.

Consideration Element names must be selected from the list for the SQL database in
use. See SQLCA elements in the “DB2” table on page 422 or SQLCA
elements in the “SUPRA” table on page 423.

expression:

Description Required. Specifies the data to be transferred into the SQLCA.

Format Must be consistent with the datatype of the SQLCA element, text or
numeric

Consideration Certain SQLCA elements are read-only and cannot have data stored into
them by the MANTIS program.

SQLCA (Statement)

MANTIS Language 425

General considerations

♦ Some SQLCA elements are not present in the SQL SQLCA. These
are extensions to the SQLCA unique to MANTIS. They are:
DBTYPE, DBNAME, MSGTEXT, and SQLISL. DBTYPE returns the
SQL database currently in use (“DB2”, “SQL/DS”, or “SUPRA”) to the
MANTIS program. DBNAME is used to retrieve or set the SUPRA
database value. MSGTEXT retrieves the SQL error message text
associated with the current SQLCA SQLCODE. SQLISL retrieves or
sets the DB2 for VSE and VM (formerly SQL/DS) ISOLATION
parameter for the DB2 for VSE and VM Access Module.

♦ Although data can be stored in some SQLCA elements, doing so
does not pass any information to the SQL database. The SQLCA is
returned to the MANTIS program after each SQL statement is
executed (EXEC_SQL-END). Any data stored in the SQLCA will be
overwritten when the next SQL statement is executed.

♦ For further information, refer to MANTIS DB2 Programming, OS/390,
VSE/ESA, P39-5028, or MANTIS SUPRA SQL Programming,
OS/390, VSE/ESA, P39-3105.

Example The following example shows how SQL error message text for an
SQLCA error message can be retrieved by a MANTIS program. The
SQLCA statement is used to store the SQLCODE value in the SQLCA
and the MSGTEXT function is used to retrieve the error text. Note that
the MSGTEXT function is not supported by SUPRA.
00150 TEXT SQL_ERROR_TEXT(254)

00160 SQLCA("SQLCODE")=(-504)

00170 SQL_ERROR_TEXT=SQLCA("MSGTEXT")

Chapter 3 MANTIS programming language

426 P39-5002-00

SQLDA (Function)
SQLDA is both a statement and a function. The SQLDA statement
stores data from the MANTIS program into the SQL Descriptor Area
(SQLDA). The SQLDA function transfers data from the SQLDA into the
MANTIS program.

Read header elements

SQLDA(sqlda_name, sqlda_header_element)

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format A text expression of 1–18 characters

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for the SQL database in use.

sqlda_header_element

Description Required. Specifies the SQLDA header element that is accessed.

Format A text expression that evaluates to one of the SQLDA header element
names shown in the “DB2” table on page 442 or the “SUPRA” table on
page 443.

SQLDA (Function)

MANTIS Language 427

Examples In the following examples, line 160 shows the SQLDA “SQLN” header
elements being read from the SQLDA:

DB2
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLN")<4

00170 .SQLDA("SQLDA1","SQLN")=4

00180 END

00190 SQLDA("SQLDA1","SQLD")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

00230 END

00240 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00250 END

00260 EXEC_SQL:| OPEN C1

00270 END

00280 EXEC_SQL:| FETCH C1 USING DESCRIPTOR SQLDA1

00290 END

00300 EMPL_NAME=SQLDA("SQLDA1","SQLDATA",1)

00310 EMPL_STREET=SQLDA("SQLDA1","SQLDATA",2)

00320 EMPL_STATE=SQLDA("SQLDA1","SQLDATA",3)

00330 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLDATA",4)

00340 SQLDA("SQLDA1")=QUIT

Chapter 3 MANTIS programming language

428 P39-5002-00

SUPRA
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLMAX")<4

00170 .SQLDA("SQLDA1","SQLMAX")=4

00180 END

00190 SQLDA("SQLDA1","SQLN")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00230 END

00240 EXEC_SQL:| OPEN C1

00250 END

00260 EXEC_SQL:| PREPARE S2 FROM 'FETCH C1 USING DESCRIPTOR SQLDA1'

00270 END

00280 EXEC_SQL:| DESCRIBE S2 INTO SQLDA1

00290 END

00300 EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1

00310 END

00320 EMPL_NAME=SQLDA("SQLDA1","SQLHOSTVAR",1)

00330 EMPL_STREET=SQLDA("SQLDA1","SQLHOSTVAR",2)

00340 EMPL_STATE=SQLDA("SQLDA1","SQLHOSTVAR",3)

00350 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLHOSTVAR",4)

00360 SQLDA("SQLDA1")=QUIT

SQLDA (Function)

MANTIS Language 429

Read repeating elements

SQLDA(sqlda_name, slqlda_repeating_element, index)

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format A text expression of 1–18 characters

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for the SQL database in use.

sqlda_repeating_element

Description Required. Specifies the repeating element of the SQLDA that is
accessed.

Format A text expression that evaluates to one of the SQLDA repeating element
names. See the “DB2” table on page 442 or the “SUPRA” table on
page 443.

index

Description Required when accessing repeating elements. Specifies the group of
SQLDA repeating elements that is accessed.

Format A numeric expression that evaluates between one and the maximum
number of repeating groups currently in the SQLDA (SQLN or SQLMAX),
inclusive

Chapter 3 MANTIS programming language

430 P39-5002-00

Examples In the following examples, lines 300–330 (DB2) and lines 320–350
(SUPRA) show SQLDA repeating elements being moved from the
SQLDA into the MANTIS program:

DB2
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLN")<4

00170 .SQLDA("SQLDA1","SQLN")=4

00180 END

00190 SQLDA("SQLDA1","SQLD")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

00230 END

00240 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00250 END

00260 EXEC_SQL:| OPEN C1

00270 END

00280 EXEC_SQL:| FETCH C1 USING DESCRIPTOR SQLDA1

00290 END

00300 EMPL_NAME=SQLDA("SQLDA1","SQLDATA",1)

00310 EMPL_STREET=SQLDA("SQLDA1","SQLDATA",2)

00320 EMPL_STATE=SQLDA("SQLDA1","SQLDATA",3)

00330 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLDATA",4)

00340 SQLDA("SQLDA1")=QUIT

SQLDA (Function)

MANTIS Language 431

SUPRA
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLMAX")<4

00170 .SQLDA("SQLDA1","SQLMAX")=4

00180 END

00190 SQLDA("SQLDA1","SQLN")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00230 END

00240 EXEC_SQL:| OPEN C1

00250 END

00260 EXEC_SQL:| PREPARE S2 FROM 'FETCH C1 USING DESCRIPTOR
SQLDA1'

00270 END

00280 EXEC_SQL:| DESCRIBE S2 INTO SQLDA1

00290 END

00300 EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1

00310 END

00320 EMPL_NAME=SQLDA("SQLDA1","SQLHOSTVAR",1)

00330 EMPL_STREET=SQLDA("SQLDA1","SQLHOSTVAR",2)

00340 EMPL_STATE=SQLDA("SQLDA1","SQLHOSTVAR",3)

00350 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLHOSTVAR",4)

00360 SQLDA("SQLDA1")=QUIT

Chapter 3 MANTIS programming language

432 P39-5002-00

SQLDA (Statement)
SQLDA is both a statement and a function. The SQLDA statement
stores data from the MANTIS program into the SQL Descriptor Area
(SQLDA). The SQLDA function transfers data from the SQLDA into the
MANTIS program.

The SQLDA statements are shown below. The SQLDA statement is
used to allocate or deallocate an SQLDA, and to transfer data from a
MANTIS program into an SQLDA.

Allocate an SQLDA

SQLDA(sqlda_name) = NEW

sqlda_name

Description Required. Specifies the name of the SQLDA to be allocated.

Format A text expression of 1–18 characters

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for the SQL database in use.

SQLDA (Statement)

MANTIS Language 433

Examples The following examples for DB2 and for SUPRA show how to allocate an
SQLDA. Line 150 in both examples allocates an SQLDA named the
“SQLDA1”.

DB2
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLN")<4

00170 .SQLDA("SQLDA1","SQLN")=4

00180 END

00190 SQLDA("SQLDA1","SQLD")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

00230 END

00240 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00250 END

00260 EXEC_SQL:| OPEN C1

00270 END

00280 EXEC_SQL:| FETCH C1 USING DESCRIPTOR SQLDA1

00290 END

00300 EMPL_NAME=SQLDA("SQLDA1","SQLDATA",1)

00310 EMPL_STREET=SQLDA("SQLDA1","SQLDATA",2)

00320 EMPL_STATE=SQLDA("SQLDA1","SQLDATA",3)

00330 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLDATA",4)

00340 SQLDA("SQLDA1")=QUIT

Chapter 3 MANTIS programming language

434 P39-5002-00

SUPRA
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLMAX")<4

00170 .SQLDA("SQLDA1","SQLMAX")=4

00180 END

00190 SQLDA("SQLDA1","SQLN")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00230 END

00240 EXEC_SQL:| OPEN C1

00250 END

00260 EXEC_SQL:| PREPARE S2 FROM 'FETCH C1 USING DESCRIPTOR SQLDA1'

00270 END

00280 EXEC_SQL:| DESCRIBE S2 INTO SQLDA1

00290 END

00300 EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1

00310 END

00320 EMPL_NAME=SQLDA("SQLDA1","SQLHOSTVAR",1)

00330 EMPL_STREET=SQLDA("SQLDA1","SQLHOSTVAR",2)

00340 EMPL_STATE=SQLDA("SQLDA1","SQLHOSTVAR",3)

00350 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLHOSTVAR",4)

00360 SQLDA("SQLDA1")=QUIT

SQLDA (Statement)

MANTIS Language 435

Deallocate an SQLDA

SQLDA(sqlda_name) = QUIT

sqlda_name

Description Required. Specifies the name of the SQLDA to be deallocated.

Format A text expression of 1–18 characters

Considerations

♦ Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for the SQL database in use.

♦ Must be a previously defined SQLDA via
SQLDA(sqlda_name)=NEW.

Chapter 3 MANTIS programming language

436 P39-5002-00

Examples The following examples show how to deallocate an SQLDA. Line 340
(DB2) and line 360 (SUPRA) deallocate an SQLDA named “SQLDA1”:

DB2
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLN")<4

00170 .SQLDA("SQLDA1","SQLN")=4

00180 END

00190 SQLDA("SQLDA1","SQLD")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DESCRIBE S1 INTO SQLDA1

00230 END

00240 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00250 END

00260 EXEC_SQL:| OPEN C1

00270 END

00280 EXEC_SQL:| FETCH C1 USING DESCRIPTOR SQLDA1

00290 END

00300 EMPL_NAME=SQLDA("SQLDA1","SQLDATA",1)

00310 EMPL_STREET=SQLDA("SQLDA1","SQLDATA",2)

00320 EMPL_STATE=SQLDA("SQLDA1","SQLDATA",3)

00330 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLDATA",4)

00340 SQLDA("SQLDA1")=QUIT

SQLDA (Statement)

MANTIS Language 437

SUPRA
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 SQL_TEXT="SELECT NAME, STREET, STATE, ZIPCODE"

00140 SQL_TEXT=SQL_TEXT+" FROM EMPLOYEE.TABLE"

00150 SQLDA("SQLDA1")=NEW

00160 IF SQLDA("SQLDA1","SQLMAX")<4

00170 .SQLDA("SQLDA1","SQLMAX")=4

00180 END

00190 SQLDA("SQLDA1","SQLN")=4

00200 EXEC_SQL:| PREPARE S1 FROM: SQL_TEXT

00210 END

00220 EXEC_SQL:| DECLARE C1 CURSOR FOR S1

00230 END

00240 EXEC_SQL:| OPEN C1

00250 END

00260 EXEC_SQL:| PREPARE S2 FROM 'FETCH C1 USING DESCRIPTOR SQLDA1'

00270 END

00280 EXEC_SQL:| DESCRIBE S2 INTO SQLDA1

00290 END

00300 EXEC_SQL:| EXECUTE S2 USING DESCRIPTOR SQLDA1

00310 END

00320 EMPL_NAME=SQLDA("SQLDA1","SQLHOSTVAR",1)

00330 EMPL_STREET=SQLDA("SQLDA1","SQLHOSTVAR",2)

00340 EMPL_STATE=SQLDA("SQLDA1","SQLHOSTVAR",3)

00350 EMPL_ZIP_CODE=SQLDA("SQLDA1","SQLHOSTVAR",4)

00360 SQLDA("SQLDA1")=QUIT

Chapter 3 MANTIS programming language

438 P39-5002-00

Set header information

SQLDA(sqlda_name, sqlda_header_element)= expression

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format A text expression of 1–18 characters

Considerations

♦ Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for the SQL database in use.

♦ Must be a previously defined SQLDA via
SQLDA(sqlda_name)=NEW.

sqlda_header_element

Description Required. Specifies the SQLDA header element that is accessed.

Format A text expression that evaluates to one of the SQLDA header element
names shown in the table on page 442 or the table on page 443
(SUPRA)

SQLDA (Statement)

MANTIS Language 439

expression

Description Required. Specifies the data to be transferred from the MANTIS program
into the SQLDA.

Format Must be consistent with the datatype of the SQLDA element being stored
(either text or numeric)

Considerations
♦ Certain SQLDA elements are read-only and cannot have data from

the MANTIS program stored in them. In some cases, storing data in
one SQLDA element causes MANTIS to automatically update other
SQLDA elements. For additional information, refer to MANTIS DB2
Programming, OS/390, VSE/ESA, P39-5028 or MANTIS SUPRA
SQL Programming, OS/390, VSE/ESA, P39-3105.

♦ Some SQLDA element names are common to all SQL databases
supported by MANTIS. However, the data contained in these
elements is not always the same. For example, “SQLN” is the
SQLDA element specifying the number of repeating groups
contained in the SQLDA for DB2. “SQLMAX” is the equivalent
SQLDA element for SUPRA. “SQLN” is an element in a SUPRA
SQLDA, but it contains the number of repeating groups which are in
use, not the maximum number of groups available. “SQLN” in the
SUPRA SQLDA is equivalent to “SQLD” in the DB2 SQLDA.

Chapter 3 MANTIS programming language

440 P39-5002-00

Examples In the following examples, for DB2 and for SUPRA, SQLDA header
elements are set in lines 250 through 270:

DB2
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 EMPL_NAME="JONES"

00140 EMPL_STREET=" NEW STREET ADDRESS"

00150 EMPL_STATE="OH"

00160 EMPL_ZIP_CODE="12345"

00170 SQL_TEXT="UPDATE EMPLOYEE.TABLE SET"

00180 SQL_TEXT=SQL_TEXT+" NAME = ?, STREET = ?,"

00190 SQL_TEXT=SQL_TEXT+" STATE = ?, ZIP_CODE = ?"

00200 SQL_TEXT=SQL_TEXT+" WHERE NAME = ?"

00210 EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

00220 END

00230 SQLDA("SQLDA1")=NEW

00240 IF SQLDA("SQLDA1","SQLN")<5

00250 .SQLDA("SQLDA1","SQLN")=5

00260 END

00270 SQLDA("SQLDA1","SQLD")=5

00280 SQLDA("SQLDA1","SQLDATA",1)=EMPL_NAME

00290 SQLDA("SQLDA1","SQLDATA",2)=EMPL_STREET

00300 SQLDA("SQLDA1","SQLDATA",3)=EMPL_STATE

00310 SQLDA("SQLDA1","SQLDATA",4)=EMPL_ZIP_CODE

00320 SQLDA("SQLDA1","SQLDATA",5)=EMPL_NAME

00330 EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

00340 END

00350 SQLDA("SQLDA1")=QUIT

SQLDA (Statement)

MANTIS Language 441

SUPRA
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 EMPL_NAME="JONES"

00140 EMPL_STREET=" NEW STREET ADDRESS"

00150 EMPL_STATE="OH"

00160 EMPL_ZIP_CODE="12345"

00170 SQL_TEXT="UPDATE EMPLOYEE.TABLE SET"

00180 SQL_TEXT=SQL_TEXT+" NAME = ?, STREET = ?,"

00190 SQL_TEXT=SQL_TEXT+" STATE = ?, ZIP_CODE = ?"

00200 SQL_TEXT=SQL_TEXT+" WHERE NAME = ?"

00210 EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

00220 END

00230 SQLDA ("SQLDA1")=NEW

00240 IF SQLDA("SQLDA1","SQLMAX")<5

00250 .SQLDA("SQLDA1","SQLMAX")=5

00260 END

00270 SQLDA("SQLDA1","SQLN")=5

00280 SQLDA("SQLDA1","SQLHOSTVAR",1)=EMPL_NAME

00290 SQLDA("SQLDA1","SQLHOSTVAR",2)=EMPL_STREET

00300 SQLDA("SQLDA1","SQLHOSTVAR",3)=EMPL_STATE

00310 SQLDA("SQLDA1","SQLHOSTVAR",4)=EMPL_ZIP_CODE

00320 SQLDA("SQLDA1","SQLHOSTVAR",5)=EMPL_NAME

00330 EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

00340 END

00350 SQLDA("SQLDA1")=QUIT

Chapter 3 MANTIS programming language

442 P39-5002-00

The following table lists and describes the SQLDA header elements for
DB2:

Element
name

MANTIS compatible
datatype

Contents / considerations

Updateable?

SQLDAID TEXT(8) Eyecatcher. Set by SQL. No
SQLDABC BIG SQLDA length. Set by SQL

when the SQLDA is allocated;
modified when SQLN is
changed.

Yes

SQLN BIG Number of repeating groups
(SQLVAR) in the SQLDA. Set
using installation defined
default value when the SQLDA
is allocated. Can be modified
by the MANTIS program if
needed.

Yes

SQLD BIG Number of repeating groups
currently in use. Set by SQL
as the result of a DESCRIBE;
can be set by program when
necessary.

Yes

SQLDA (Statement)

MANTIS Language 443

The following table lists and describes the SQLDA header elements for
SUPRA:

Element
name

MANTIS compatible
datatype

Contents / considerations

Updateable?

SQLDAID TEXT(8) Eyecatcher. Set by SQL. No
SQLABC BIG Length of SQLCA. Set by

SQL.
No

SQLMAX BIG Number of repeating groups
(SQLVAR) in the SQLDA. Set
using installation defined
default value when the SQLDA
is allocated. Can be modified
by the MANTIS program if
needed.

Yes

SQLN BIG Total number of repeating
groups in use in the SQLDA.
Set as a result of a DESCRIBE
to the total number of host
variable parameters in the
statement (except for
DESCRIBE in FETCH USING
DESCRIPTOR where SQLN is
set to the number of result
table columns).

Yes

SQLD BIG Total number of output host
variables in the SQLDA. Set
as a result of a DESCRIBE to
the number of host variables
(except for DESCRIBE in
FETCH USING DESCRIPTOR
where SQLD is set to the
number of result table
columns).

Yes

Chapter 3 MANTIS programming language

444 P39-5002-00

Set repeating element information

SQLDA(sqlda_name, repeating_element,index)= expression

sqlda_name

Description Required. Specifies the name of the SQLDA to be accessed.

Format A text expression of 1–18 characters

Consideration Naming conventions for SQL entities must be followed. Refer to the
appropriate SQL language manual for the SQL database in use.

sqlda_repeating_element

Description Required. Specifies the repeating element of the SQLDA that is
accessed.

Format A text expression that evaluates to one of the SQLDA repeating element
names shown in the following tables

Consideration Repeating element names must be selected from the list for the SQL
database in use on your system. See the first table at the end of this
section (DB2) or the second table at the end of this section (SUPRA).

SQLDA (Statement)

MANTIS Language 445

index

Description Required when accessing repeating elements. Specifies the group of
SQLDA repeating elements that is accessed.

Format A numeric expression between one and the maximum number of
repeating groups currently in the SQLDA (SQLN or SQLMAX), inclusive

General considerations

♦ Using certain SQLDA elements causes other SQLDA elements to
automatically be set by MANTIS. For example, storing data into the
SQLDA element “SQLDATA” causes MANTIS to set the datatype
(“SQLTYPE”) and data length (“SQLLEN”) elements automatically.
Storing data into the SQLDA “SQLIND” element updates the datatype
element (“SQLTYPE”) to show that an indicator variable is present.
For more information, and for considerations when using the SQLDA
function, refer to MANTIS DB2 Programming, OS/390, VSE/ESA,
P39-5028, or MANTIS SUPRA SQL Programming, OS/390,
VSE/ESA, P39-3105.

♦ See also “EXEC_SQL-END” on page 217, “SQLCA (Function)” on
page 420, and “SQLCA (Statement)” on page 424.

Chapter 3 MANTIS programming language

446 P39-5002-00

Examples In the following examples for DB2 and for SUPRA, lines 280–320 store
data from the MANTIS program into SQLDA repeating group elements:

DB2
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 EMPL_NAME="JONES"

00140 EMPL_STREET=" NEW STREET ADDRESS"

00150 EMPL_STATE="OH"

00160 EMPL_ZIP_CODE="12345"

00170 SQL_TEXT="UPDATE EMPLOYEE.TABLE SET"

00180 SQL_TEXT=SQL_TEXT+" NAME = ?, STREET = ?,"

00190 SQL_TEXT=SQL_TEXT+" STATE = ?, ZIP_CODE = ?"

00200 SQL_TEXT=SQL_TEXT+" WHERE NAME = ?"

00210 EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

00220 END

00230 SQLDA("SQLDA1")=NEW

00240 IF SQLDA("SQLDA1","SQLN")<5

00250 .SQLDA("SQLDA1","SQLN")=5

00260 END

00270 SQLDA("SQLDA1","SQLD")=5

00280 SQLDA("SQLDA1","SQLDATA",1)=EMPL_NAME

00290 SQLDA("SQLDA1","SQLDATA",2)=EMPL_STREET

00300 SQLDA("SQLDA1","SQLDATA",3)=EMPL_STATE

00310 SQLDA("SQLDA1","SQLDATA",4)=EMPL_ZIP_CODE

00320 SQLDA("SQLDA1","SQLDATA",5)=EMPL_NAME

00330 EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

00340 END

00350 SQLDA("SQLDA1")=QUIT

SQLDA (Statement)

MANTIS Language 447

SUPRA
00100 TEXT SQL_TEXT(254)

00110 TEXT EMPL_NAME(30),EMPL_STREET(30),EMPL_STATE(2)

00120 BIG EMPL_ZIP_CODE

00130 EMPL_NAME="JONES"

00140 EMPL_STREET=" NEW STREET ADDRESS"

00150 EMPL_STATE="OH"

00160 EMPL_ZIP_CODE="12345"

00170 SQL_TEXT="UPDATE EMPLOYEE.TABLE SET"

00180 SQL_TEXT=SQL_TEXT+" NAME = ?, STREET = ?,"

00190 SQL_TEXT=SQL_TEXT+" STATE = ?, ZIP_CODE = ?"

00200 SQL_TEXT=SQL_TEXT+" WHERE NAME = ?"

00210 EXEC_SQL:| PREPARE S1 FROM :SQL_TEXT

00220 END

00230 SQLDA ("SQLDA1")=NEW

00240 IF SQLDA("SQLDA1","SQLMAX")<5

00250 .SQLDA("SQLDA1","SQLMAX")=5

00260 END

00270 SQLDA("SQLDA1","SQLN")=5

00280 SQLDA("SQLDA1","SQLHOSTVAR",1)=EMPL_NAME

00290 SQLDA("SQLDA1","SQLHOSTVAR",2)=EMPL_STREET

00300 SQLDA("SQLDA1","SQLHOSTVAR",3)=EMPL_STATE

00310 SQLDA("SQLDA1","SQLHOSTVAR",4)=EMPL_ZIP_CODE

00320 SQLDA("SQLDA1","SQLHOSTVAR",5)=EMPL_NAME

00330 EXEC_SQL:| EXECUTE S1 USING DESCRIPTOR SQLDA1

00340 END

00350 SQLDA("SQLDA1")=QUIT

Chapter 3 MANTIS programming language

448 P39-5002-00

The following table lists the SQLDA repeating elements in DB2:

Element name

MANTIS
compatible
datatype

Contents / considerations

Updateable?

SQLTYPE BIG SQL datatype code. Code differs
depending on whether set by
SQLDATA or SQLIND. Set when
the value of variable is
transferred via SQLDATA or
SQLIND.

No

SQLLEN BIG Length of data element in current
repeating group. Set when value
of variable is transferred via
SQLDATA.

No

SQLDATA TEXT, BIG, Subfunction that moves or sets
DBCS data, sets SQLTYPE and
SQLLEN, and sets address of
the data in the SQLDA. Used to
transfer value of variable
between database and MANTIS.

Yes

SQLIND BIG Subfunction that moves data,
sets SQLTYPE and address of
the data in the SQLDA. Used to
transfer value of the indicator
variable between database and
MANTIS.

Yes

SQLNAME TEXT(30) SQL column name. Set by SQL,
can be reset by the MANTIS
program.

Yes

SQLDA (Statement)

MANTIS Language 449

Element name

MANTIS
compatible
datatype

Contents / considerations

Updateable?

SQLCOLNAME TEXT(18) SQL column name. Set by
SUPRA as the result of a
DESCRIBE; can be set by the
MANTIS program.

Yes

SQLCOLIO BIG Indicates whether host variable is
input or output. Set by SUPRA
as the result of a DESCRIBE

No

SQLCOLMODE BIG Indicates whether null values are
allowed. Set as a result of a
DESCRIBE.

No

SQLCOLTYPE BIG Datatype as it resides on the
database. Set by SUPRA as a
result of a DESCRIBE.

No

SQLCOLLENGTH BIG Total number of bytes used to
store the data. Set by SUPRA as
the result of a DESCRIBE, or by
MANTIS when data is transferred
by SQLHOSTVAR.

No

SQLCOLFRAC BIG Number of decimal positions for
FIXED column types. Set by
SUPRA as the result of a
DESCRIBE. Not used by
MANTIS because all numeric
data is floating point.

No

Chapter 3 MANTIS programming language

450 P39-5002-00

The following table lists the SQLDA repeating elements in SUPRA:

Element name

MANTIS
compatible
datatype

Contents / considerations

Updateable?

SQLHOSTIND BIG Contains the value of the
indicator variable. Used to
indicate the presence of null
variables and truncated data.
Set by SUPRA during SQL
function; can be set by the
MANTIS program.

Yes

SQLHOSTVARTY BIG Contains the datatype of the data
in the SQLDA. Set by MANTIS
when SQLHOSTVAR is used.

No

SQLHOSTVAR TEXT, BIG,
or DBCS

Subfunction that physically
transfers data to MANTIS data
areas and the between SQLDA
data areas. Used to transfer
value of variable between
database and MANTIS.

Yes

SQR

MANTIS Language 451

SQR
The SQR function returns the square root of an arithmetic expression.

SQR(a)

a

Description Required. Specifies any valid non-negative arithmetic expression.

General consideration

 See also “ABS” on page 86, “ATN” on page 94, “COS” on page 164,
“INT” on page 294, “LOG” on page 320, “SGN” on page 399, “SIN” on
page 403, “SQR” on page 451, and “TAN” on page 454.

Example The following examples show how the SQR function returns the square
root of an arithmetic expression:

Example Results Comments
SQR(25) 5
SQR(2) 1.41421356
SQR(0) 0

Chapter 3 MANTIS programming language

452 P39-5002-00

STOP
The STOP statement terminates program execution. When a STOP
statement is executed, MANTIS:

♦ Returns to programming mode if the program was executing while in
programming mode.

♦ Returns to your Facility Selection menu if the program was executing
while not in programming mode.

STOP

General considerations

♦ STOP statements are used for step processing and debugging.
When placed at strategic locations in a program, you can use STOP
with a RUN statement and a statement number to execute and check
a portion of a program. You can also use STOP to check variables,
and then execute the next portion.

♦ In programming mode, a STOP in an external routine stops
execution within the external routine. Use the immediate EXIT
command to return to the calling program (an immediate-mode EXIT
at DOLEVEL zero causes errors).

♦ STOP statements are required before the first internal subroutine
ENTRY when the top-level routine is not surrounded by an ENTRY-
EXIT pair.

♦ Use STOP to return to the facility program instead of reaching the
top-level EXIT of a DOLEVEL 0 program.

♦ See also “EXIT” on page 219, “RETURN” on page 388, and “RUN”
on page 391.

STOP

MANTIS Language 453

Example The following example shows how the STOP statement is used to stop
program execution:
00020 SCREEN MAP1("INDEX")

00030 FILE REC1("INDEX","SERENDIPITY")

00040 CONVERSE MAP1

00050 WHILE MAP1<>"CANCEL"

00060 .DO INSERT_RECORD

00065 .STOP Check variables and return codes
00070 .CLEAR MAP1 then RUN 70
00080 .CONVERSE MAP1

00090 END

00100 STOP

00120 ENTRY INSERT_RECORD

00130 .INSERT REC1

00140 EXIT

Chapter 3 MANTIS programming language

454 P39-5002-00

TAN
The TAN function returns the tangent of a where a is in radians.

TAN(a)

a

Description Required. Specifies the angle whose tangent is to be returned.

Format Any valid arithmetic expression

General considerations

♦ The variable (a) must be a value where a tangent is defined and
TAN(a) is within the numeric limits of MANTIS.

♦ If the angle is in degrees, it must be converted to radians. See “PI”
on page 367 for instructions on how to do this.

♦ See also “ATN” on page 94, “COS” on page 164, “PI” on page 367,
and “SIN” on page 403.

Example The following example shows how the TAN function returns the tangent
of an arithmetic expression:

Example Results Comments
TAN(100) -.587213915
TAN(0) 0
TAN(PI/4) 1

TERMINAL

MANTIS Language 455

TERMINAL
The TERMINAL function returns a text string of 1–8 characters
containing the terminal ID.

TERMINAL

General considerations

♦ The value returned by TERMINAL varies depending on the operating
environment. See the examples.

♦ See also “PASSWORD” on page 349, “PRINTER (Function)” on
page 370, “PRINTER (Statement)” on page 371, “TERMSIZE” on
page 456, and “USER” on page 497.

Examples The following show values returned by the TERMINAL function

Example Results Comments
TERMINAL "L338" Sample EIBTRMID for

CICS.
TERMINAL "BACK$MAN" Background task.
TERMINAL "DUMMY" Batch MANTIS.
TERMINAL(1,1) "L" Substringing OK.

The following example shows how the TERMINAL function can be used
to test for a specific terminal ID and return a message:
00020 IF TERMINAL="XX02"

00030 .SHOW TERMINAL

00040 .SHOW"NOT AUTHORIZED FROM THIS TERMINAL":WAIT

00050 END

Chapter 3 MANTIS programming language

456 P39-5002-00

TERMSIZE
The TERMSIZE function returns the size of the current terminal in rows
and columns.

TERMSIZE

General considerations

♦ When TERMSIZE=expr is executed, a valid execution is accepted
but ignored for compatibility with older releases of MANTIS.

♦ TERMSIZE is available for compatibility with previous releases of
MANTIS. The ATTRIBUTE(TERMINAL) function can be used to
obtain terminal row and column values as well as other terminal
attributes.

♦ See also “ATTRIBUTE TERMINAL/CURSOR statement” on
page 109, “PASSWORD” on page 349, “PRINTER (Function)” on
page 370, “PRINTER (Statement)” on page 371, and “USER” on
page 497.

Examples

Example Results Comments
TERMSIZE "24X80" For a “model 2”.
TERMSIZE(1,2) "24" Number of rows.
TERMSIZE(4) "80" Number of columns.

TEXT

MANTIS Language 457

TEXT
The TEXT statement names and specifies dimensions for text variables
and lists.

[]

[]
�
�
�

�

�
�
�

�
�
�

�
�
�

�
��
�

	

�

�

�
�

�
�
�

�
��
�

	

�

�

. . .
16

 ,
 ,

16

 ,
 TEXT

lengthn
name2

lengthn
name1

name

Description Required. Specifies the name of the text variable.

Format A MANTIS symbolic name, (see “Symbolic names” on page 24)

Consideration When the symbolic name is previously defined, MANTIS bypasses this
definition.

n

Description Optional. Specifies the number of elements in a text array.

Format Arithmetic expression that evaluates to a value in the range 1–255

Considerations

♦ MANTIS rounds n to an integer value.

♦ If not specified, name is a text scalar.

length

Description Optional. Specifies the maximum length of each text element.

Format Arithmetic expression that evaluates to a value in the range 1–254

Default 16

Consideration MANTIS rounds length to an integer value.

Chapter 3 MANTIS programming language

458 P39-5002-00

General considerations

♦ A TEXT variable contains a zero-length string (NULL), upon initial
definition.

♦ MANTIS truncates trailing blanks for text fields when reading in from
external files, and MANTIS adds trailing blanks when writing to
external files. MANTIS Internal Files maintain trailing blanks and
current length.

♦ Hexadecimal data can be stored/handled but might not display as
intelligible data in a MANTIS text field. Each terminal control
characters is translated to a question mark (“?”) for display.

♦ MANTIS accepts only as many characters in a text variable as you
specify in the TEXT statement. See the following examples and
“LET (TEXT/KANJI/DBCS variables)” on page 312.

♦ Text variables can be used to hold upper or lowercase characters.

♦ Text variables can be used to hold double-byte character set (DBCS)
characters when used with Shift-out and Shift-in characters and
MIXMODE ON.

♦ See also “BIG” on page 134, “DBCS considerations” on page 29,
“DBCS (Statement)(Kanji users only)” on page 181 “KANJI (Kanji
users only)” on page 298, “MIXMODE” on page 329, “POINT” on
page 368, “SIZE” on page 404, and “SMALL” on page 415.

TEXT

MANTIS Language 459

Examples

♦ The following example shows how the TEXT retains only the length
dimension specified. For example, if you enter:

00010 TEXT ALPHA <== Defaults to length of 16

00020 TEXT BETA(5)

00030 ALPHA="123456789ABCDEFGHIJK"

00040 BETA="123456789"

00050 SHOW ALPHA

00060 SHOW BETA

00070 WAIT

 the screen displays:
123456789ABCDEFG

12345

♦ The following example shows how the TEXT statement is used to
define several different variables. In the following statement, ALPHA
has a maximum length of 16:

00010 TEXT ALPHA

00020 TEXT BETA(20)

00030 TEXT GAMMA(10,30)

Chapter 3 MANTIS programming language

460 P39-5002-00

TIME (Function)
TIME is both a statement and a function. The TIME function returns a
text string containing the current time in the format of the current
specification.

TIME

General considerations

♦ The format of the date string can be an installation-defined value or a
program-defined value (see “TIME (Statement)” on page 462). The
supplied default is “HH:MM:SS”. The TIME statement and function
provide flexibility in the choice of the delimiter that appears between
the elements of the TIME text string. You may choose no delimiter or
any delimiter, such as a colon or a hyphen. MANTIS will return the
text string in whatever format you choose.

♦ The TIME function may have substring parameters (see
“Substringing text variables” on page 53).

♦ See “TIME (Statement)” on page 462 for how to specify the format.

TIME (Function)

MANTIS Language 461

Examples

♦ The following examples show how the TIME function returns the
current time:

Example Results Comments
TIME "13:23:01" Default format.
TIME "1:23 PM" Alternate format set up by:

DATE="HH:MM PM"

TIME(1,5) "13:23" Substringing allowed; in this
case, just the HH:MM.

TIME "13:23" When TIME=“HH:MM”.
TIME "05:30:00" When TIME=“05:30:00”, all

digits are considered to be
punctuation characters.
Subsequent TIME functions
return this value until the
format reset.

Chapter 3 MANTIS programming language

462 P39-5002-00

TIME (Statement)
TIME is both a statement and a function. Use the statement to specify a
text string by which the TIME function formats the current time.

TIME=mask-expression

mask-expression

Description Required. Specifies the type of string MANTIS uses to return the current
time with the TIME function.

Format A text string of 0–12 characters

Considerations

♦ If the text string specified is longer than 12 characters, the first 12
characters will be used.

♦ If NULL (“”) is specified, the installation default is used.

♦ The following strings will be substituted with the data described when
used with the TIME function:

- AM =AM/PM indicator

- HH = hours (12 hour/zero suppressed when AM is present, else
24-hour)

- MM = minutes

- SS = seconds

- Punctuation characters

Your Master User may define an installation-wide default value for
the TIME format.

TIME (Statement)

MANTIS Language 463

General considerations

♦ You can specify the format of the TIME returned value in one of the
following ways:

- TIME = mask, as specified in a program by a user.

- TIME format specified by installation (see your Master User).

- System Default (HH:MM:SS).

♦ The format is maintained down DO/CHAIN levels.

♦ No subscripting of the statement is permitted.
(TIME(1,5)=“HH:MM”—the TIME statement—is invalid.) However,
you can use subscripts on the TIME function,

♦ When MANTIS executes a CHAIN (without LEVEL), KILL, fault
(error), or STOP, the format is reset to the installation default.

♦ HH:MM:SS will be used for all CONTROL users programs.

♦ Arguments for the TIME statement are translated to uppercase upon
execution of your program.

♦ During testing, a constant TIME can be set; for example,
TIME=“05:30:00”. It is maintained according to the rules stated
above.

♦ The TIME statement and function provide flexibility for choice of the
delimiter that appears between the elements of the TIME text string.
You may choose no delimiter, a slash, a hyphen, or a period.
MANTIS will return the text string in whatever format you choose.

♦ See also “DATE (Function)” on page 177, “DATE (Statement)” on
page 179, and “TIME (Function)” on page 460.

Examples

See examples under “TIME (Function)” on page 460.

Chapter 3 MANTIS programming language

464 P39-5002-00

TOTAL

TOTAL (TOTAL and SUPRA PDM users only)
The TOTAL statement specifies a TOTAL file
view.

TOTAL

 ([:] TOTAL - , [,PREFIX][,])
[, ([:] TOTAL - , [,PREFIX][,]) . . .]
ON
OFF

name1 library1 view1 password1 n1
name2 library2 view2 password2 n2

�

�
�

�
�

�

�
�

�
�

name

Description Required. Specifies the name you use to refer to a TOTAL file view in
subsequent GET, UPDATE, INSERT, DELETE, and DEQUEUE
statements.

Format A MANTIS symbolic name, (see “Symbolic names” on page 24)

Consideration When the symbolic name is previously defined, MANTIS bypasses this
definition.

TOTAL

MANTIS Language 465

[library:] TOTAL-view

Description Required. Specifies the name of an existing TOTAL file view as you
defined it during TOTAL file view design.

Format 1–33 character text expression that evaluates to a valid TOTAL file view
name

Considerations

♦ If the TOTAL view is in another user’s library, you can access it by
specifying the name of the user in whose library it does reside.

 [library:] TOTAL-view

♦ If the TOTAL view resides in your library, you can specify only the
TOTAL view name.

♦ If you want this entity to be HPO bound, the library name is required,
even if it is your own library.

♦ This parameter is translated to uppercase upon execution of your
program.

password

Description Required. Specifies the password valid for the type of access you need
for this TOTAL file view (e.g., read-only, alter, insert/delete).

Format Text expression that evaluates to the password; and can be entered in
lower or uppercase

Chapter 3 MANTIS programming language

466 P39-5002-00

PREFIX

Description Optional. Specifies whether MANTIS places the symbolic name and an
underscore before all data field names associated with this TOTAL view,
including the refer variable. If, for example, you code:
10 TOTAL CUSTOMER("CLIENT","SALES",PREFIX)

and the TOTAL view “CLIENT” had a data field named NUMBER, the
program would refer to that data field now as CUSTOMER_NUMBER.

Format Must be coded exactly as shown

Consideration See the PREFIX considerations for “FILE” (“FILE” starts on page 222).

n

Description Optional. Indicates how many buffers MANTIS should allocate. Each
buffer contains data accessible through the TOTAL view from a single
TOTAL record. MANTIS also allocates multiple buffers for the reference
variable.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1–255

Consideration When you use the n parameter, any GET, INSERT, UPDATE, and
DELETE statements should contain the LEVEL=n option to tell MANTIS
which buffer to process.

ON

Description Optional. Forces MANTIS to sign on to the TOTAL or SUPRA PDM
database.

Consideration You may need to use this option if you are calling an INTERFACE
program that expects a TOTAL SINON or does a SINOF before
returning.

OFF

Description Optional. Forces MANTIS to sign off from the TOTAL or SUPRA PDM
database.

Consideration You may need to use this option if you are calling an INTERFACE
program that expects to do a TOTAL SINON.

TOTAL

MANTIS Language 467

General considerations

MANTIS retrieves the specified TOTAL file view from your library and
validates it for consistency with the active Database Descriptor Module
(DBMOD) or SUPRA directory. If there is an inconsistency, MANTIS
returns an error message and halts execution.

♦ A TOTAL file open is issued on the first DELETE, GET, INSERT, or
UPDATE.

♦ MANTIS opens only the necessary TOTAL database files with an
access mode dependent on the password (for deletions, insertions,
or updates—SUPD; for gets—IUPD).

♦ If the view applies to a single-entry TOTAL file, MANTIS opens only
this file. The REALM mode is IUPD if you can issue only GET
statements or SUPD if you can issue update commands.

♦ If the view applies to variable-entry TOTAL files, MANTIS opens with
“IUPD” for read-only requests or with “SUPD” for updates. In
addition, any associated master files are opened. If inserting or
deleting is not allowed, MANTIS opens (in IUPD mode) only the
master file necessary to provide keyed access. If inserting or
deleting is allowed, MANTIS opens (in SUPD mode) all associated
master files. The element list defined in the TOTAL file view is then
bound using TOTAL’s binding conventions.

♦ In a DTB environment, you should COMMIT following TOTAL
statements to avoid locking the system resource table.

♦ The library and name arguments for the TOTAL statement are
translated into uppercase upon execution of your program.

♦ A TOTAL ON statement accepts a return status of “****” and “ACTV”.
Any other return status produces an error message.

♦ A TOTAL OFF statement accepts a return status of “****”, “NCAT”, or
“NOTO”. Any other return status produces an error message.

♦ See also “DELETE” on page 183, “GET” on page 234, “INSERT” on
page 277, “TRAP” on page 469, and “UPDATE” on page 479.

Chapter 3 MANTIS programming language

468 P39-5002-00

Examples

♦ The following example shows TOTAL statements to access two files:
00040 TOTAL CUSTOMER("CLIENT","SALES")

00050 TOTAL HISTORY("PAYMENTS","TEXAS",11)

 If the SALES password allows viewing only, MANTIS opens the
CUSTOMER file without TOTAL update access. HISTORY would be
allocated 11 buffers. If the password allows updating, TOTAL update
access is available.

♦ The following example shows how the TOTAL statement accesses a
file:

00010 TOTAL CUSTOMER("CLIENT","SALES")

00020 TRAP CUSTOMER ON

00030 GET CUSTOMER

00040 IF CUSTOMER="NOTOPEN"

.

.

.

TRAP

MANTIS Language 469

TRAP
The TRAP statement intercepts I/O errors from MANTIS files, external
VSAM files, or additional status codes returned by TOTAL or RDM. The
program continues to execute for trapped errors.

TRAP ON
OFFname �

��
�

��

name

Description Required. Specifies the name of the file or view as defined in a FILE,
ACCESS, TOTAL, or VIEW statement.

Format A MANTIS symbolic name, (see “Symbolic names” on page 24)

ON

OFF

Description Required. ON starts interception of errors; OFF halts the messages.

Default OFF

Format Must be coded exactly as shown

Chapter 3 MANTIS programming language

470 P39-5002-00

General considerations

♦ With TRAP ON, MANTIS reflects the status of a GET, UPDATE,
DELETE, and INSERT statement in the value of a symbolic variable
name. See “GET” on page 234, “UPDATE” on page 479, “DELETE”
on page 183, and “INSERT” on page 277.

Use caution when using TRAP because of the possible loss of
database integrity if the appropriate action is not taken for trapped
errors. Consult your Master User or DBA before you attempt to trap
errors.

♦ TRAP ON and proper error-checking routines are recommended for
all production programs.

♦ If you use the TRAP statement, you assume all responsibility for
detecting and handling error situations that can occur while
processing the file. Improper use can result in loop conditions. For
example:

00010 ACCESS REC("X","X")

00020 TRAP REC ON

00030 GET REC FIRST

00040 WHILE REC<>"END"

00050 .DELETE REC

00060 .GET REC

00070 END

 This program can result in a loop if, for example, an “ERROR”,
“LOCK”, or “NOTOPEN” status is obtained on a GET.

TRAP

MANTIS Language 471

♦ Problems can occur in other situations where status is not checked:
00010 ACCESS RECA("A","A"), RECB("B","B"): | A and B have

fields in common

00020 TRAP RECA ON:TRAP RECB ON

00030 GET RECA

00040 INSERT RECB

 If the GET for RECA fails, the resulting insert to RECB might not
contain the desired results. Note that the insert on RECB can also
fail without obtaining an error message.

♦ The status “NOTOPEN” is only issued on the first use after the
ACCESS statement. On subsequent use, an “ERROR” status is
issued if the file cannot be opened.

♦ See also “ACCESS” on page 87, “ASI” on page 93, “DELETE” on
page 183, “FILE” on page 222, “FSI” on page 232, “GET” on
page 234, “INSERT” on page 277, “RELEASE (Function)” on
page 378, “RELEASE (Statement)” on page 380, “TOTAL” on
page 464, “VIEW” on page 501, and “UPDATE” on page 479.

Example The following example shows how the TRAP statement allows status
checking:
00100 FILE REC("EXAMPLES:CUSTOMERS","CASINO")

.

.

.

00160 TRAP REC ON

00170 INSERT REC

.

.

.

00220 UPDATE REC

00230 IF REC="ERROR"

00240 .RESET

00250 END

.

.

.

Chapter 3 MANTIS programming language

472 P39-5002-00

TRUE
The TRUE function returns a value of +1 and can be used to set
conditions within your program.

TRUE

General considerations

♦ Any nonzero value in a relational expression evaluates to “TRUE”
condition. For example, you can code IF ERROR_CONDITION and
not IF ERROR_CONDITION = TRUE. The latter will be false if
ERROR_CONDITION has any value except +1.

♦ See also “FALSE” on page 221, “MODIFIED” (explicit use of TRUE
function) on page 332, “NOT” on page 336, and “NULL” on page 338.

Example

Example Results Comments
TRUE 1

The following example shows how the TRUE function can be used to set
conditions in a program:
00010 ERROR_OCCURRED=FALSE

.

.

.

00050 IF CUST_NUM>10000

00060 .ERROR OCCURED=TRUE

00070 END

.

.

.

00100 IF ERROR_OCCURED

00110 .DO ERROR_DISPLAY

00120 .ELSE

00130 .DO VALID_DISPLAY

00140 END

TXT

MANTIS Language 473

TXT
The TXT function returns the text value of a numeric expression, a.

TXT(a)

a

Description Required. Specifies any valid arithmetic expression.

General considerations

♦ TXT(0) returns a single space. SIZE (TXT(0)) is equal to 1. It does
not return an empty string (NULL) or “0”.

♦ When necessary, MANTIS will return the TXT value in E-notation.

♦ IBM MANTIS does not place a leading 0 before nonzero values
between -1 and 1. MANTIS in a non-IBM environment does place a
leading 0 before nonzero values between -1 and 1.

♦ See also “FORMAT” on page 230 and “VALUE” on page 499.

Example

Example Results Comments
TXT(123) "123"
TXT(+123) "123"
TXT(-456) "-456"
TXT(1/2) ".5" Platform differences
TXT(-1/3) "-.333333333" Platform differences
TXT(EXP(30)) ".106864746E14" E-notation
TXT(0) " " Blank, not null
TXT(-EXP(-30)) "-.935762297E-13" E-notation

The following example shows how the TEXT function can be used to
create a correlation between PF keys and option numbers:
00010 KEY_TO_PRESS="PF"+TXT(OPTION_NUMBER)

Chapter 3 MANTIS programming language

474 P39-5002-00

UNPAD
The UNPAD statement allows you to remove all occurrences of a
specified character from either or both sides of a text or DBCS variable.

UNPAD []
BEFORE
AFTER
ALL

v exp
�

�

�
�

�

�

�
�

v

Description Required. Represents the variable to be unpadded.

Considerations

♦ If the referenced variable is subscripted (apart from the array
occurrence) (see the LET statement), the BEFORE, AFTER, and
ALL options cannot be used. If you try to use the substring
subscripts with one of these options, you receive an error message.

♦ If the referenced variable has two substring subscripts, each
subscript represents the boundaries of the unpad operation. The
leftmost boundary is marked by the first substring subscript; the
rightmost boundary by the second substring subscript.

♦ If the referenced variable has one substring subscript, MANTIS
assumes that the second (missing) subscript is equal to the current
size of the variable. Therefore, the first substring subscript marks the
starting point of the unpad operation. With no second substring
subscript, the end of the unpad operation is the rightmost byte of the
originally defined area for the variable.

♦ MANTIS unpads the variable by comparing each character in the
variable with the unpad character. If the two are equal, the matching
character is stripped off and the rest of the text is moved to the left.
The current length is reduced by 1. This process repeats until a
character not equal to the unpad character is detected. Characters
are checked from left to right if you use the BEFORE option; from
right to left if you use the AFTER option; and a combination with the
ALL option.

UNPAD

MANTIS Language 475

exp

Description Optional. Indicates a text or DBCS expression that represents the
character to be unpadded.

Default Spaces (blanks)

Format 1–n character expression for text or DBCS, but MANTIS only uses the
first character

Consideration If you do not supply a value, MANTIS automatically assumes the space
character.

BEFORE

Description Optional. Specifies that unpadding occur only on the left-hand side of the
variable (delete the leading pad characters).

AFTER

Description Optional. Specifies that unpadding occur only on the right-hand side of
the variable (delete trailing characters). This is the default value.

Chapter 3 MANTIS programming language

476 P39-5002-00

ALL

Description Optional. Indicates that unpadding occurs on both sides of the variable
(delete leading and trailing pad characters).

General consideration

 See also “PAD” on page 346 and “POINT” on page 368.

Examples

The following examples of code and its results show how the PAD
statement can be used with various symbols on either side of an
expression. In the following examples:
00010 TEXT A(20),B(20)

00020 A="********ABC*********"

00030 B="123 "

Example Results Comments
UNPAD A "*" "********ABC" Default AFTER.
UNPAD A BEFORE "ABC*********"
UNPAD A ALL "ABC"
UNPAD B "123" Default “ ” AFTER.
UNPAD B " " BEFORE "123 " No leading blanks.
UNPAD B ALL "123"
A="ABC--++++----+++++++"

UNPAD A(10,13)"-"

"ABC--++++----+++++++"

"ABC--+++++++++++"
Size=20.
Size=16.

A=" JOE B. JACKSON "

UNPAD A "JOE B. JACKSON"
Does not remove
middle blanks.

UNPAD

MANTIS Language 477

♦ The following example shows UNPAD being used to determine if a
text field is all blanks or empty:

00010 UNPAD CLIENT_NAME

00020 IF CLIENT_NAME=""

.

.

.

00050 END

♦ The following example shows UNPAD being used to determine if a
text field is all zeros or empty:

00010 UNPAD CLIENT_NUMBER"0"

00020 IF CLIENT_NUMBER=""

.

.

.

00050 END

Chapter 3 MANTIS programming language

478 P39-5002-00

UNTIL-END
The UNTIL-END statement executes a block of statements repeatedly
until a specified condition becomes true. MANTIS executes the block of
statements in the range of the UNTIL once before it tests the condition.

UNTIL expression
 .
 . statements
 .
END

expression

Description Required. Specifies the condition that ends the execution of the UNTIL
loop.

Format Arithmetic or relational expression that evaluates to either TRUE
(nonzero) or FALSE (zero)

General considerations
♦ UNTIL-END executes the body (statements) at least once. If you

need to omit execution of the body when the initial condition is false,
use the WHILE-END statement.

♦ The UNTIL statement expression is not evaluated until statements
execute the first time.

♦ You can use BREAK to terminate the loop or NEXT to perform the
test and the next iteration.

♦ Each of the statements UNTIL and END must appear on a line by
itself. Only a comment (separated by a colon) can follow the UNTIL
expression.

♦ See also “BREAK” on page 136, “FOR-END” on page 226, “IF-ELSE-
END” on page 274, “NEXT” on page 335, “WHEN-END” on
page 508, and “WHILE-END” on page 510.

Example The following example shows how the UNTIL-END statement is used to
set up a condition that is tested until true:
00010 SEED
00020 HEAD "RANDOM NUMBERS --"
00025 '"Press CANCEL to stop, ENTER to continue"
00030 UNTIL KEY="CANCEL"
00040 .SHOW RND(10)
00050 .WAIT
00060 END

UPDATE

MANTIS Language 479

UPDATE
The UPDATE statement replaces a record on a MANTIS file, an external
file, a personal computer file, an RDM logical view, or a TOTAL DBMS
view file with an updated (altered) record.

UPDATE (External file)

UPDATE file-name [LEVEL=n]

file-name

Description Required. Specifies the name (as defined in a previously executed
ACCESS statement) of an external file where you want to update a
record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to update.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1 through m,
where m is the maximum buffer number, as defined in the corresponding
ACCESS statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

Chapter 3 MANTIS programming language

480 P39-5002-00

General considerations

♦ An external file open is issued on the first DELETE, GET, INSERT, or
UPDATE (when required).

♦ MANTIS replaces only the data elements in the record that are
defined in the External file view. You do not need to read the record
before you update it. Before you issue the UPDATE statement,
make sure that the data elements represented through the external
file view do in fact contain the right values.

♦ You cannot change a key field in a file record before an update;
instead, delete the existing record and insert the new record with an
altered key.

♦ For INDEXED files, the contents of key data elements identify the
record to be updated.

♦ For SEQUENTIAL files, the contents of the associated reference
variable that contains the Relative Byte Address (RBA) identify the
record to be updated.

UPDATE

MANTIS Language 481

♦ For NUMBERED files, the Relative Record Number (RRN) contained
in the corresponding reference variable identifies the record to be
updated.

♦ MANTIS returns a text string in the variable called file-name that
reflects the status of the operation:

Returned text string Description
“” The UPDATE was successful.
“LOCK” * The password specified in the ACCESS

statement for this file view is not valid for
updates.

“ERROR” * MANTIS received an error status. Use the
FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during record

updating.
♦ The record to be updated did not exist

on the file.
♦ For SEQUENTIAL, variable-length

record files, you tried to change the
record length.

♦ The External file exit canceled the
operation.

“NOTOPEN” * The external file is not open.

* Returned only when TRAP is in effect for the file.

Chapter 3 MANTIS programming language

482 P39-5002-00

♦ If you perform an UPDATE without a GET...ENQUEUE, the system
internally performs a GET...ENQUEUE prior to performing the
UPDATE. No data values are moved to program variables.

♦ For extended external file status messages and Function Status
Indicators (FSIs), see “Extended status messages for MANTIS and
external files” on page 521.

♦ The External File Exit can affect this statement. See your Master
User for details.

♦ See also “DELETE” on page 183, “DELETE (Personal computer file)”
on page 194, “FSI” on page 232, “GET” on page 234, “INSERT” on
page 277, and “TRAP” on page 469.

Example The following example shows how the UPDATE statement replaces an
external file record:
00020 ACCESS RECORD("INDEX","SERENDIPITY",16)

00030 SCREEN MAP("INDEX")

00040 CONVERSE MAP

00050 COUNTER=1

00060 WHILE MAP<>"CANCEL"AND COUNTER<17

00070 .WHEN INDICATOR(COUNTER)="U"

00080 ..UPDATE RECORD LEVEL=COUNTER

.

.

.

UPDATE

MANTIS Language 483

UPDATE (MANTIS file)

UPDATE file-name [LEVEL=n]

file-name

Description Required. Specifies the name (as defined in a previously executed FILE
statement) of an existing MANTIS file where you want to update a record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to update.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1 through m,
where m is the maximum buffer number, as defined in the corresponding
FILE statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

Chapter 3 MANTIS programming language

484 P39-5002-00

General considerations

♦ You do not need to read the record before updating it.

♦ If you perform an UPDATE without a GET...ENQUEUE, the system
internally performs a GET...ENQUEUE prior to performing the
UPDATE. No data values are moved to program variables.

♦ The contents of key data elements identify the record to be updated.

♦ You cannot change a key field in a file record before an update;
instead, delete the existing record and insert the new record with an
altered key.

♦ MANTIS returns a text string, in the variable called file-name, that
reflects the status of the operation:

Returned text string Description
“” The UPDATE was successful.
“LOCK” * The password specified in the FILE

statement for this file view is not valid for
updates.

“ERROR” * MANTIS received an error status. Use the
FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during record

updating.
♦ The record to be updated did not exist

on the file.
♦ The SETPRAY Exit canceled the

operation.

* Returned only when TRAP is in effect for the file.

♦ The Setpray Exit can affect this statement. See your Master User for
details.

♦ For extended MANTIS file status messages and Function Status
Indicators (FSIs), see “Extended status messages for MANTIS and
external files” on page 521.

♦ See also “DELETE” on page 183, “FSI” on page 232, “GET” on
page 234, “INSERT” on page 277, and “TRAP” on page 469.

UPDATE

MANTIS Language 485

Example The following example shows how a record in a MANTIS file is replaced
with an altered record:

.

.

00060 ..CONVERSE MAP

00070 ..WHEN MAP="PF1"

00080 ...INSERT RECORD

00090 ..WHEN MAP="PF2"

00100 ...DELETE RECORD

00110 ..WHEN MAP="PF3"

00120 ...UPDATE RECORD

00130 ..END

00140 ..GET RECORD

00150 .END

00170 EXIT

Chapter 3 MANTIS programming language

486 P39-5002-00

UPDATE (Personal computer file)

UPDATE file-name [LEVEL=n]

file-name

Description Required. Specifies the name (as defined in a previously executed
ACCESS statement) of a file where you want to update a record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to update.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1 through m,
where m is the maximum buffer number, as defined in the corresponding
ACCESS statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

General considerations

♦ MANTIS replaces only the data elements in the record that are
defined in the file view. You do not need to read the record before
you update it. Before you issue the UPDATE statement, you must
make sure that the data elements represented through the file view
do in fact contain the right values.

♦ For SEQUENTIAL files, the contents of the associated reference
variable that contains the Relative Byte Address (RBA) identify the
record to be updated.

♦ For NUMBERED files, the Relative Record Number (RRN) contained
in the corresponding reference variable identifies the record to be
updated.

UPDATE

MANTIS Language 487

♦ MANTIS returns a text string, in the variable called file-name, that
reflects the status of the operation:

Returned text string Description
“” The UPDATE was successful.
“LOCK” * The password specified in the ACCESS

statement for this file view is not valid for
updates.

“ERROR” * MANTIS received an error status. Use the
FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ A physical error occurred during record

updating.
♦ The record to be updated did not exist

on the file.
♦ You tried to change the record length

of a SEQUENTIAL file record.

* Returned only when TRAP is in effect for the file.

♦ For extended personal computer file status messages and Function
Status Indicators (FSIs), see “Extended status messages for
MANTIS and external files” on page 521.

♦ The computer user can access files only residing on his or her
personal computer.

♦ See also “DELETE” on page 183, “FSI” on page 232, “GET” on
page 234, “INSERT” on page 277, and “TRAP” on page 469.

Example The following example shows how a personal computer file record is
replaced by the UPDATE statement:
00020 ACCESS RECORD("INDEX","SERENDIPITY",16)

00030 SCREEN MAP("INDEX")

00040 CONVERSE MAP

00050 COUNTER=1

00060 WHILE MAP<>"CANCEL" AND COUNTER<17

00070 .WHEN INDICATOR(COUNTER)="U"

00080 ..UPDATE RECORD LEVEL=COUNTER

.

.

Chapter 3 MANTIS programming language

488 P39-5002-00

UPDATE (RDM logical view)

UPDATE view-name [LEVEL=n]

view-name

Description Required. Specifies the symbolic name (as defined in a previously
executed VIEW statement) of the logical view where you want to update
a record.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to update.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1 through m,
where m is the maximum buffer number, as defined in the corresponding
VIEW statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

General considerations

♦ If you try to alter the logical view key, you have actually requested a
repositioning of the logical view, not a modification of the current
record. To change a logical view key, you must first delete the old
record, then insert a new one.

♦ Because RDM records might not be uniquely keyed, you must
establish your current record position in a view (by reading the
record) before you execute an UPDATE.

UPDATE

MANTIS Language 489

♦ MANTIS returns a text string, in the variable called view-name, that
reflects the status of the operation:

Returned text string Description
“” The UPDATE was successful.
“LOCK” * You do not have permission to update

logical records in the logical view.
“NOTFOUND” * The variable-entry chain set with the

requested key doesn’t exist.
“ERROR” * MANTIS received an error status. Use the

FSI function (see “FSI” on page 232) for
more information. Possible causes:
♦ An RDM error occurred during

database access.
♦ You tried to perform an invalid function

for the user view.

* Returned only when TRAP is in effect for the file.

♦ RDM logical view update returns three status indicators to the
application program that indicate processing results—FSI, ASI, VSI.
FSI indicates the success or failure of your command. ASI indicates
the status of each field in the logical record. VSI indicates the
highest field status within the logical record. For a complete
discussion of these status indicators, see “Status functions” on
page 517.

♦ If you perform an UPDATE without a GET...ENQUEUE, the system
internally performs a GET...ENQUEUE prior to performing the
UPDATE.

♦ Use the GET...ENQUEUE prior to using the UPDATE function when
computing a new value for a logical record (that is incrementing a
counter). If you are simply using the UPDATE to place a value in a
logical record, it is not necessary to issue a GET...ENQUEUE
statement that is not dependent on the value already present.

♦ If TRAP is not in effect and the update cannot be applied because of
a failure status from SUPRA RDM, MANTIS automatically issues a
RESET. If TRAP is in effect and the program does not issue a
RESET when “ERROR” is returned, then it is possible that MANTIS
does only part of the modification.

Chapter 3 MANTIS programming language

490 P39-5002-00

♦ Your DBA can disallow updates. If so, MANTIS returns the “LOCK”
status if TRAP is in effect. If TRAP is not in effect, MANTIS displays
a message and halts execution.

♦ If you have issued an UPDATE since the last terminal I/O, MANTIS
automatically issues a COMMIT prior to any terminal I/O (when
COMMIT ON is in effect).

♦ See also “ASI” on page 93, “COMMIT” on page 149, “DELETE” on
page 183, “FSI” on page 232, “GET” on page 234, “INSERT” on
page 277, “TRAP” on page 469, and “VSI” on page 505.

Example The following example shows how the UPDATE statement replaces an
RDM logical view record:
00010 VIEW CUSTOMER("CUST")

00020 SCREEN MAP("CUST_UPDATE")

00030 SHOW"ENTER CUSTOMER NUMBER:"

00040 OBTAIN CUST_NO

00050 GET CUSTOMER(CUST_NO)

00060 IF CUSTOMER="FOUND"

00070 .INPUT_OK=FALSE

00080 .UNTIL INPUT_OK

00090 ..CONVERSE MAP

00100 ..DO EDIT_INPUT

00125 ..WHEN EDIT_OK

00130 ...INPUT_OK=TRUE

00135 ..END

00140 .END

00150 .UPDATE CUSTOMER

00160 .SHOW"CUSTOMER INFORMATION UPDATED"

.

.

.

UPDATE

MANTIS Language 491

UPDATE (TOTAL file view)

UPDATE file-name [LEVEL=n]

file-name

Description Required. Specifies the name (as defined in a previously executed
TOTAL statement) of TOTAL view containing the record you want to
update.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

LEVEL=n

Description Optional. Specifies the buffer number that contains the record you want
to update.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1 through m,
where m is the maximum buffer number, as defined in the corresponding
TOTAL statement

Considerations

♦ Only specify LEVEL=n when the file-name has buffers defined.

♦ MANTIS uses only the integer portion of n.

General considerations

♦ A TOTAL file open is issued on the first DELETE, GET, INSERT, or
UPDATE.

♦ MANTIS merges data residing in the specified variables with the
existing record and rewrites the entire record to the database.

♦ When MANTIS performs an update for a TOTAL view, every field in
the view must have user-specified data, or the update overlays
existing data with blanks or zeros.

♦ If you change any keys in a variable-entry file record, MANTIS places
the updated record in the file view associated with the new key
values.

Chapter 3 MANTIS programming language

492 P39-5002-00

♦ You do not need to read the record before you update it. MANTIS
always obtains exclusive control of the record for the current task
before requesting TOTAL to update it.

♦ To ensure you have the most current data, you can first issue the
GET statement with the ENQUEUE parameter (see GET).

♦ MANTIS returns a text string, in the variable called file-name, that
reflects the status of the operation:

Returned text string Description
“” The UPDATE was successful.
“NOTFOUND” * The variable-entry chain set with the

requested key does not exist.
“LOCK” * The password specified in the TOTAL

statement is invalid.
“NOTOPEN” * The TOTAL view is not open.
“NOTAVAL” * The TOTAL file or view is not open.

* Returned only when TRAP is in effect for the file.

♦ See also “DELETE” on page 183, “GET” on page 234, “INSERT” on
page 277, and “TRAP” on page 469.

Example The following example shows how the UPDATE statement replaces a
TOTAL DBMS record:
00020 TOTAL BILL("BOM","ASSEMBLY",8)

.

.

.

00100 UPDATE BILL LEVEL=BUFFER

UPPERCASE

MANTIS Language 493

UPPERCASE
The UPPERCASE function converts a text string into uppercase.

UPPERCASE(t)

t

Description Required. Specifies the text expression that you wish to convert to
uppercase.

Consideration Specifies any valid text expression.

General considerations

♦ Data from terminals can be automatically uppercased by field or
terminal attributes, or by the TP monitor.

♦ UPPERCASE can be required to perform case-insensitive
comparisons.

 This statement can be affected by the TRCODE option in the
Customization Table. See your Master User for details.

Uppercase translation can be modified by your System Administrator
for your native language.

♦ The translation table used depends upon the current LANGUAGE
setting.

♦ UPPERCASE can also be set on the Full Screen Edit Profile screen
for the duration of the correct edit session. Refer to MANTIS
Program Design and Editing, OS/390, VSE/ESA, P39-5013.

♦ See also “Text considerations” on page 22 and “LOWERCASE” on
page 321.

Chapter 3 MANTIS programming language

494 P39-5002-00

Example

Example Results Comments
UPPERCASE ("abc") "ABC"
UPPERCASE ("aBc % 123") "ABC % 123"
UPPERCASE ("áé") "ÁÉ" Depends on your

language setting
and translation
table. See your
Master User.

The following example shows how the UPPERCASE function is used to
compare the content of two text strings, without regard to case:
00110 IF UPPERCASE (T1)=UPPERCASE(T2)

00120 .SHOW "Name match, record already exists"

00130 END

USAGE

MANTIS Language 495

USAGE
The USAGE command determines where a symbolic name appears in a
program. MANTIS searches each statement within a given range for the
symbolic name you specify.

USAGE name [,n1[,n2]]

name

Description Required. Specifies the name of the object of the search.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

n1

Description Optional. Specifies the first statement number of the search.

Default First line in your program

Format Arithmetic expressions that evaluate to a value in the range of 0–30000

Consideration MANTIS uses only the integer portion of n.

n2

Description Optional. Specifies how many occurrences of the symbolic name you
want to display.

Default Number of lines available on your terminal

Format Arithmetic expressions that evaluate to a value in the range of 0–30000

Consideration MANTIS uses only the integer portion of n2.

Chapter 3 MANTIS programming language

496 P39-5002-00

General considerations

♦ You can terminate a USAGE listing at any time by typing KILL.

♦ USAGE is only valid in the MANTIS Line Editor. Use the FIND or
RFIND commands in the Full Screen Editor.

♦ USAGE works only on full symbolic names. You cannot look for
partial names, literals, or reserved words.

Example The following example shows how the USAGE command determines
where a symbolic name will appear in a program:

USAGE REC1

30 FILE REC1("INDEX","SERENDIPITY")

40 WHILE REC1<>"END"

50 .GET REC1

.

.

.

USER

MANTIS Language 497

USER
The USER function returns a text string identifying the current user name.

USER

General consideration

 See also “PASSWORD” on page 349, “PRINTER (Function)” on
page 370, “PRINTER (Statement)” on page 371, “TERMINAL” on
page 455, and “TERMSIZE” on page 456.

Example

Example Results Comments
USER "NANCYJONES"
USER(1,5) "NANCY" Substringing permitted.

Chapter 3 MANTIS programming language

498 P39-5002-00

USERWORDS
The USERWORDS function returns the number of MANTIS symbolic
names currently in use.

USERWORDS

General considerations

♦ A limit of 2048 user words (symbolic names) exists for a single
program. If you are nearing this limit, you should reduce the number
of user words by using automapping, by reorganizing your program to
use internal or external routines, or both.

♦ You can use this function to monitor your current usage. To get an
accurate count, you should execute all of the complex statements
(FILE, SCREEN, etc.).

♦ TEXT, BIG, SMALL, DBCS, KANJI, ENTRY, PROGRAM, and LET
statements define new userwords. FILE, ACCESS, TOTAL, VIEW,
SCREEN, and INTERFACE statements define the name on the
statement. During execution, they implicitly define symbolic names
for their elements.

♦ While in programming mode, RUN (without a line number), and
SAVE or REPLACE (for an unbound program) will discard any
implicitly defined symbolic names.

♦ See also “DATAFREE” on page 176 and “PROGFREE” on page 372.

Example The following example shows how the USERWORDS function returns
the number of MANTIS symbolic names currently in use:

Example Results Comments
USERWORDS 0 For an empty program.
USERWORDS 65 For a sample program.

VALUE

MANTIS Language 499

VALUE
The VALUE function returns the numeric value of a text expression.

VALUE(t)

t

Description Required. Specifies a text expression to convert to a numeric value.

Consideration Any valid text expression.

General considerations

♦ The text string is evaluated using the MANTIS number set as
specified in Numeric Considerations under “Symbolic names” on
page 24.

If the text string contains the character E immediately prior to
numeric digits, then the numeric value returned from the function
might not be what you expect, because the E signifies scientific
numeric representation, exponent, for example 12E38. If the text
string contains the character E, this function must be used with
caution.

♦ Characters other then 0–9, E, “+”, “-”, and “.” are ignored. No
operations are done on the string.

♦ If one decimal point is in the string, it is used. Multiple decimal points
in the string are considered punctuation and are all ignored. (The
decimal point is “.” or “,” as defined in your user profile.)

♦ See also “TXT” on page 473.

Chapter 3 MANTIS programming language

500 P39-5002-00

Example

Example Results Comments
VALUE("39") 39
VALUE("-40") -40
VALUE(KEY) 3 If KEY=“PF3”
VALUE(KEY) 0 If KEY=“CANCEL”
VALUE("98.6") 98.6
VALUE("12.6.2002") 1262002 Multiple decimals are

treated as punctuation.
VALUE(NULL) 0
VALUE("12E9") .12E11 E-notation.
VALUE("5 Slippers") 5
VALUE("Oxford 4E-10") .4E-9 E-notation.
VALUE("612-2300") -6122300
VALUE("5+7") 57 No operations are

done on the string.

VIEW

MANTIS Language 501

VIEW
The VIEW statement specifies an RDM logical view. MANTIS retrieves
the view from the SUPRA Directory. If the view is not known to RDM or
not authorized for your use, MANTIS returns an error message and halts
execution. If the view is valid, MANTIS opens it and establishes the
MANTIS variables as they are defined in the SUPRA Directory with the
following exceptions:

♦ MANTIS converts all hyphens (-) in logical view field names to
underscores (_) in MANTIS variable names and vice versa.

♦ The characters $ and # are invalid in MANTIS. If the logical view has
field names with these characters in them, MANTIS returns an error
message and halts execution.

�
�
�

�

��
�

�

�

�
�
�

�

��
�

�

�

 OFF
])][,ON[(

. . .
]])])[, (SELECT[,][, PREFIX][,([,

.])])[,(SELECT[,][, PREFIX][,(

VIEW
passwordid-user

...f2list2...f2list1n2 name2-viewname2
f1list2.. f1list1n1 name1-view name1

name

Description Required. Specifies the name that you use to refer to the logical view in
subsequent GET, UPDATE, INSERT, DELETE, TRAP, and MARK
statements.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

Consideration When the symbolic name is previously defined, MANTIS bypasses this
definition.

view-name

Description Required. Specifies the name of an existing logical view as defined in the
SUPRA Directory.

Format 1–30 character text expression that evaluates to a valid RDM logical view
name

Consideration This parameter is translated to uppercase upon execution of your
program.

Chapter 3 MANTIS programming language

502 P39-5002-00

PREFIX

Description Optional. Indicates that MANTIS place the symbolic name and an
underscore before all field names associated with this logical view. If, for
example, you code:
10 VIEW BIN("BOTTLES",PREFIX)

and the logical view BOTTLES has a field named VOLUME, the program
would refer to that field now as BIN_VOLUME.

Format Must be coded exactly as shown

Consideration See the PREFIX considerations under “FILE” on page 222.

n

Description Optional. Indicates how many buffers MANTIS should allocate. Each
buffer contains data accessible through the logical view from a single
logical view record.

Default 1

Format Arithmetic expression that evaluates to a value in the range 1–255

Consideration When you use the n parameter, any GET, INSERT, UPDATE, DELETE,
and MARK statements must contain the LEVEL=n option to tell MANTIS
which buffer to process.

SELECT(f1list1,...,fnlistn)

Description Optional. Specifies a list (or a series of lists) of logical view fields that this
MANTIS program uses. MANTIS transmits only the fields specified to or
from RDM.

Format Each list is a text expression, up to 254 characters in length, that
contains the logical view field names separated by a comma (,). Each
field name must conform to naming conventions established by RDM and
to all restrictions specified in this document.

Considerations

♦ MANTIS converts any underscores (_) to hyphens (-) in the requests
made to RDM.

♦ This parameter is translated to uppercase upon execution of your
program.

VIEW

MANTIS Language 503

ON

Description Optional. Forces MANTIS to sign on to SUPRA RDM.

Consideration Use the VIEW ON parameter to force a different user or password to be
used for SUPRA RDM. This parameter is needed when interface
programs that have signed off to RDM are called.

user-id

Description Optional. Indicates the RDM user to which you want to sign on.

Default Current MANTIS user

password

Description Optional. Specifies the password associated with the specified user ID.

Default Current password

OFF

Description Optional. Forces MANTIS to sign off from SUPRA RDM.

Consideration Use the VIEW OFF parameter when interface programs require the task
to be signed off prior to the CALL.

Chapter 3 MANTIS programming language

504 P39-5002-00

General considerations

♦ The SUPRA Directory must authorize access to a logical view before
a MANTIS user can execute the VIEW statement.

♦ If you fail to include required fields in the logical view, you cannot
perform inserts and some updates on the logical view.

♦ Modifying the key order in the VIEW statement SELECT option could
adversely affect performance. Your DBA has defined the key order
on the SUPRA Directory to maximize performance.

♦ A VIEW statement can appear anywhere in your program. Must be
executed before the first GET, UPDATE, INSERT, or DELETE that
references it.

♦ The symbolic name you specify on a VIEW statement becomes the
name of the user view (a subset of the logical view). Therefore, if
you use the same symbolic name on more than one VIEW statement
(at different DO levels), the VIEW statements must refer to the same
logical view and must have an identical SELECT list. If the VIEW
statements are different, then they must each have a different
MANTIS symbolic name.

♦ MANTIS normally signs on upon first access to RDM and signs off in
the Sign on As Another User Facility Program.

♦ Arguments (except for passwords) for the VIEW statement are
translated to uppercase upon execution of your program.

♦ See also “ASI” on page 93, “DELETE” on page 183, “FSI” on
page 232, “INSERT” on page 277, “RELEASE (Function)” on
page 378, “RELEASE (Statement)” on page 380, “TRAP” on
page 469, “UPDATE” on page 479, and “VSI” on page 505.

Examples

♦ The following example shows how the VIEW statement identifies an
RDM logical view:
00010 VIEW CUSTOMER("CUST")
00020 VIEW CUST_ITEM("CUST_ITEM",10,SELECT("CUST_NO,ITEM_NUM",
00030 '"QUANTITY_ON_ORDER"))

♦ The following example shows how the VIEW statement may be used
to sign on to RDM as a different user:
00010 VIEW ON("PRODUSER","X")

VSI

MANTIS Language 505

VSI
The VSI function indicates the highest field status (ASI) for the last
operation on a view.

VSI(view-name)

view-name

Description Required. Specifies the name of the logical view.

Format A MANTIS symbolic name (see “Symbolic names” on page 24)

General considerations

♦ Validity Status Indicators (VSIs) reflect the overall validity of the user
view record you used in your last request. See “RDM status
functions” on page 517 for more details.

♦ See also “ASI” on page 93, “DELETE” on page 183, “FSI” on
page 232, “GET” on page 234, “INSERT” on page 277, “TRAP” on
page 469, “UPDATE” on page 479, and “VSI” on page 505.

Example

Example Results Comments
VSI(PARTS) "CHANGED"

The following example shows how the VSI function can be used to test a
condition:
00020 VIEW PARTS("PARTS_ON_ORDER")

.

.

.

00100 GET PARTS

00110 IF VSI(PARTS)="CHANGED"

.

.

.

Chapter 3 MANTIS programming language

506 P39-5002-00

WAIT
The WAIT statement temporarily suspends execution of a program. You
generally use the WAIT statement to display unformatted data (from a
SHOW statement) on the screen until you press a key to continue
execution. You must use a WAIT statement to display SHOWS when
you execute a program from a menu.

WAIT

General considerations

♦ To view data, you must include a WAIT or OBTAIN statement after a
SHOW and before PROMPT, CONVERSE, and STOP.

♦ If you do not execute a WAIT, the data from SHOWs are only
displayed when the screen full of data is available for the terminal, or
an OBTAIN is done. Uncontinued SHOWS—those ending with a
semicolon (;)—can be displayed on the message line of a
subsequent CONVERSE.

♦ You can include a WAIT in your program for debugging purposes.
You can enter KILL to stop execution or press ENTER (or any PF key)
to continue without having to respecify RUN line number (see
Example 2).

♦ See also “KEY” on page 301, “OBTAIN” on page 341, and “SHOW”
on page 400.

♦ If you code a WAIT statement directly below a CONVERSE, the
WAIT will be included as part of the CONVERSE. This processing is
the same for OBTAIN (see “OBTAIN” on page 341). If you want a
WAIT to actually occur in this situation, you need to code two WAIT
statements together (e.g., WAIT:WAIT). The first will be executed
along with the CONVERSE and the second will be executed by itself.
The following example illustrates this concept:
00010 ENTRY WAIT_TEST

00020 SCREEN MAP("test")

00030 CONVERSE MAP

00040 WAIT:WAIT

00050 EXIT

WAIT

MANTIS Language 507

Examples

♦ The following example shows how the WAIT statement suspends
execution of a program, so that unformatted data can be displayed:

00010 .WHILE MAP<>"CANCEL"

00020 ..GET REC(CUST_NUMBER)EQUAL

00030 ..SHOW REC:WAIT

00040 ..IF REC="FOUND"

00050 ...MESSAGE="'PF1' TO UPDATE 'PF2' TO CANCEL"

00060 ...CONVERSE MAP

00070 ...WHEN MAP="PF1"

00080UPDATE REC

00090MSG="UPDATE COMPLETE"

00100 ...WHEN MAP="PF3"

00110MSG="MAINTENANCE CANCELLED AT USER'S REQUEST"

00120 ...END

00130 ..ELSE

00140 ...MSG="CUSTOMER NOT FOUND"

00150 ..END

00160 ..CLEAR MAP

00170 ..MESSAGE=MSG

00180 ..CONVERSE MAP

00190 .END

♦ The following example shows lines inserted for debugging purposes:
1000 GET REC

1010 SHOW "@1010",REC,FIELD1,FIELD2,:WAIT

…

3000 ENTRY SUB(A)

3010 IF DEBUGGING

3020 .SHOW"@ CHECKPOINT3 – IN SUB – Argument is";A:WAIT

3030 END

Chapter 3 MANTIS programming language

508 P39-5002-00

WHEN-END
The WHEN-END statement executes a block of statements when a
specified condition is TRUE. MANTIS performs the test before executing
the block. If the condition is false, or after executing the block, execution
proceeds to the next WHEN.

WHEN expression
 .statements
[WHEN expression
 .statements]
…
END

expression

Description Required. Specifies the condition required before MANTIS executes the
block of statements.

Format Arithmetic or relational expression that evaluates to a value of TRUE
(nonzero) or FALSE (zero)

General considerations

♦ MANTIS evaluates every WHEN statement in a program, even if an
earlier condition is met. A BREAK statement can cause execution to
pass to the statement after the END. The conditions are independent
and may not be mutually exclusive (see example below).

♦ A BREAK statement causes execution to pass to the statement after
the END.

♦ A NEXT statement causes execution to pass to the next WHEN
condition from the middle of a statement block.

♦ Both the WHEN and the END statements must appear on a line by
themselves. MANTIS ignores any additional statements coded on the
end of a WHEN or END statement (and separated by a colon).

♦ WHEN-END structures cannot be directly nested, unless separated
by an intervening IF-ELSE-END, FOR-END,UNTIL-END, or WHILE-
END. Otherwise, the nesting level would be ambiguous.

♦ See also “BREAK” on page 136, “FOR-END” on page 226, “IF-ELSE-
END” on page 274, “NEXT” on page 335, “WHEN-END” on
page 508, and “UNTIL-END” on page 478.

WHEN-END

MANTIS Language 509

Example The following example shows how the WHEN-END statement executes a
particular block of statements when a particular condition is met:
00010 ENTRY INDEX

00020 .FILE RECORD("INDEX","SERENDIPITY")

00025 .FILE RECORD1("INDEX","SERENDIPITY")

00030 .SCREEN MAP("INDEX")

00040 .GET RECORD

00050 .WHILE RECORD<>"END"AND MAP<>"CANCEL"

00060 ..CONVERSE MAP

00063 ..WHEN MAP="CANCEL"

00066 ...STOP

00070 ..WHEN ACTION="DELETE"

00080 ...DELETE RECORD

00090 ..WHEN ACTION="KEYCHANGE"

00100 ...DELETE RECORD1(OLDKEY) ALL

00110 ..WHEN ACTION="KEYCHANGE" OR ACTION="INSERT"

00120 ...INSERT RECORD

00130 ..WHEN MAP<>"CANCEL"

00140 ...GET RECORD

00150 ..END

00160 .END

00170 EXIT

Chapter 3 MANTIS programming language

510 P39-5002-00

WHILE-END
The WHILE-END statement executes a block of statements repeatedly
while a specified condition is true. If the condition is FALSE, MANTIS
terminates the WHILE and executes the statement after END. If the
condition is TRUE, MANTIS executes the statements within the WHILE
range and then reevaluates the expression.

WHILE expression
 .statements
END

expression

Description Required. Specifies the condition that must exist while MANTIS executes
the block of statements.

Format Arithmetic or relational expression that evaluates to a value of TRUE
(nonzero) or FALSE (zero)

General considerations

♦ WHILE-END will not execute the body (statements) if the expression
is initially FALSE (zero). If you need to execute the body once,
regardless of the initial condition, use the UNTIL-END statement.

♦ You can use BREAK to terminate the loop or NEXT to perform the
test and the next iteration.

♦ Both the WHILE and the END statements must appear on a line by
themselves. MANTIS ignores any additional statements coded on
the end of a WHILE or an END statement (and separated by a
colon).

♦ See also “BREAK” on page 136, “FOR-END” on page 226, “IF-ELSE-
END” on page 274, “NEXT” on page 335, “WHEN-END” on
page 508, and “UNTIL-END” on page 478.

WHILE-END

MANTIS Language 511

Example The following example shows how the WHILE-END statement is used to
execute a block of code as long as a specific condition is true:
00010 ENTRY INDEX

00020 .FILE RECORD("INDEX","SERENDIPITY")

00030 .SCREEN MAP("INDEX")

00040 .GET RECORD

00050 .WHILE RECORD<>"END"AND MAP<>"CANCEL"

00060 ..CONVERSE MAP

00070 ..WHEN MAP="PF1"

00080 ...INSERT RECORD

00090 ..WHEN MAP="PF2"

00100 ...DELETE RECORD

00110 ..WHEN MAP="PF3"

00120 ...UPDATE RECORD

00130 ..END

00140 ..GET RECORD

00150 .END

00170 EXIT

Chapter 3 MANTIS programming language

512 P39-5002-00

ZERO
The ZERO function returns the value zero.

ZERO

General considerations

♦ The following expressions are equivalent:
NATION_COUNTER=ZERO

NATION_COUNTER=0

♦ See also “FALSE” on page 221, “NULL” on page 338, and “TRUE” on
page 472.

Example The following example shows how the ZERO function returns the value of
zero:

Example Results Comments
ZERO 0

MANTIS Language 513

A
Dissimilarity debugging

Dissimilarity errors occur in MANTIS when processing a complex
statement (e.g., SCREEN, FILE, or ACCESS). This appendix defines the
types of dissimilarity and suggests how you can locate and correct these
errors.

The following types of dissimilarity exist in MANTIS:

♦ TYPE. Refers to BIG, SMALL, DBCS, KANJI, and TEXT definitions.

♦ DIMENSION. Can occur for the following reasons:

- When identically named text fields executed by ACCESS, FILE,
TOTAL or VIEW statements are too small.

- When an array has been defined on a layout or repeats appear
on a screen.

- When repeats on a screen design have created an arrayed
element.

- When the LEVEL parameter on a FILE, INTERFACE, or TOTAL-
related statement has created an array.

Appendix A Dissimilarity debugging

514 P39-5002-00

MANTIS displays the name of the field in question in the error message.
Use the FIND command to locate any previous definitions. Note that the
previous definition can be by another complex statement, in which case
the FIND (Full Screen Editor only) or the USAGE command (Line Editor
only) does not display it. Also, if the variable was passed to the routine
through an ENTRY statement, you may need to work backwards into the
calling routine to resolve the problem. Finally, you verify that the field
definition in the design or view and, if applicable, the number of levels
specified, are correct.

Use the SIZE function (operands “DIM”, “MAX”, 1, and 2) to determine
currently defined dimensions. See also “SIZE” on page 404 for more
information.

MANTIS Language 515

B
MANTIS reserved words

This appendix lists reserved words as they were added with each new
release of MANTIS. It is organized with the most recent additions listed
last. These reserved words also appear in “Overview of MANTIS
language” on page 21.

Release 4.0

ASI EQUAL PROGRAM VSI
DOLEVEL FSI TERMSIZE

Release 4.2

BIND DOWN MODIFIED SUBMIT
BREAK EDIT NULL TO
BY FOR ORD ULTRA
CHR GO PAD UNPAD
CURSOR KANJI PERM UP
DBPAGE LANGUAGE RETURN WINDOW

Appendix B MANTIS reserved words

516 P39-5002-00

Release 5.2

DBCS* MIXM NULL SQLCA
EXEC_SQL MIXMODE NUMERIC SQLDA
LOWERCASE MIXT SQLBIND UPPERCASE
MIXD

* This reserved word is available with service level 5231 and above.

Release 5.4

BLOB DECIMAL INTEGER

Release 5.5

LUID

The following list contains Full Screen Editor commands. These are not
reserved words, but they could require use of the escape character to
eliminate ambiguity. Refer to MANTIS Program Design and Editing,
OS/390, VSE/ESA, P39-5013, for details on the use of the escape
character.

BOT EC LOC RES
BOTTOM ERRCODE PRINT RF
C F PROF RFIND
CAN FIND PROFILE RIGHT
CANCEL L RC TOP
CHANGE LEFT RCHANGE
CHG LOCATE RCHG

MANTIS Language 517

C
Status functions

This appendix describes the meanings of several types of statuses that
are returned by the status indicators FSI, (Function Status Indicators),
ASI (Attribute Status Indicators, and VSI (Validity Status Indicators).
Other sections describe extended status messages for internal and
external files and views and corresponding message text you can receive
while working in other environments.

RDM status functions
RDM provides three status functions that can indicate the success or
failure of a RDM logical view DELETE, GET, INSERT, or UPDATE. The
tables in this appendix list and describe the indicators that these functions
return.

♦ FSI (Function Status Indicators). See “Function Status Indicators”
on page 518.

♦ ASI (Attribute Status Indicators). See “Attribute Status Indicators”
on page 519.

♦ VSI (Validity Status Indicators). See “Validity Status Indicators” on
page 520.

Appendix C Status functions

518 P39-5002-00

Function Status Indicators
The FSI indicates the success or failure of your command. The ASI
indicates the status of each field in the logical record. The VSI indicates
the highest field status within the logical record. An appropriate error
message appears with each indicator. Function Status Indicators appear
in the following table:

MANTIS FSI
value

RDM FSI
value

Meaning

DATA D Data error. The logical record contains invalid data.
Check the ASIs to find the field(s) containing the invalid
value.

DUPLICATE N Failed due to an occurrence problem. This can be due to
an INSERT duplicate found.

ERROR F This indicates a major error. Something could be wrong
with the database, or you could have attempted to
perform an illegal function on the user view.

GOOD * Successful GET or UPDATE.
NOTFOUND N Failed due to an occurrence problem. This can be due to

a GET not found.
RESET X RESET recommended—During processing, function

modifications were made to the database before MANTIS
detected the error condition. Issue a RESET to restore
the database.

RESTART R Restart request on COMMIT.
SECURITY S Security.
UNAVAILABLE U Unavailable resources.

FSI example
Consider the following FSI example:
00020 VIEW CUSTOMERS("NEW CUSTOMERS")

.

.

.
00100 GET CUSTOMERS
00110 IF FSI(CUSTOMERS)<>"GOOD"

.

.

.

RDM status functions

MANTIS Language 519

Attribute Status Indicators
Attribute Status Indicators (ASI) reflect the status of each field defined in
your logical view. ASIs have one-to-one mapping to each external field.
MANTIS Attribute Status Indicators appear in the following table:

MANTIS ASI
value

RDM ASI
value

Meaning

CHANGED C Field value changed by another view.
DATA V The field contains an invalid value.
MISSING - The field is missing. It has a null value. (Valid for GET

processing only.)
NEW + The field exists, but has changed since the last access.

(Valid for GET processing only.)
SAME = The field exists and has not changed since the last access.

The following list shows the three ways to use ASIs:

1. When you issue a GET command, certain fields that are returned
may not have a value. You can check this status (on fields that have
not been altered) with the ASI.

2. If you receive an FSI indicating a data error, you can use the ASI to
find which fields have illegal values.

3. When you issue an UPDATE command, another view may have
updated a field value since your last GET. If this is the case,
MANTIS doesn’t perform your UPDATE. Use the ASI function to
check this status and determine what course of action to take.

ASI example
Consider the following ASI example:
00020 VIEW PARTS("PARTS ON ORDER")

.

.

.

00100 GET PARTS

00110 IF ASI(PARTS,PART NAME)="MISSING"

Appendix C Status functions

520 P39-5002-00

Validity Status Indicators
Validity Status Indicators (VSI) reflect the overall validity of the user view
record you used in your last request. For example, if an ASI returns a
“DATA” status, the VSI is “DATA”. Check this indicator before checking
each ASI. MANTIS Validity Status Indicators appear in the following
table:

MANTIS VSI
value

RDM VSI
value

Meaning

CHANGED C Field value changed by another view.
DATA V At least one invalid ASI was returned.
MISSING - No invalid ASIs were returned, but at least one missing ASI

was returned.
NEW + No invalid or missing ASIs were returned, but at least one

field has changed since the last access.
SAME = No invalid, missing or new physical occurrences were

returned for this RDM function.

The VSI enables you to determine if you need any additional processing
of ASIs to correct invalid data or to fill in missing values.

VSI example
Consider the following VSI example:
00020 VIEW PARTS("PARTS ON ORDER")

.

.

.

00100 GET PARTS

00110 IF VSI(PARTS)="CHANGED"

.

.

.

Extended status messages for MANTIS and external files

MANTIS Language 521

Extended status messages for MANTIS and external files
MANTIS provides extended status messages as well as Function Status
Indicators (FSIs) for internal (MANTIS) files, and external files (such as
VSAM and PC CONTACT). The table under “File status codes and
messages” on page 522 lists the various file statuses that are returned.

The MANTIS and external file statuses are returned when you perform a
DELETE, GET, INSERT, or UPDATE. To obtain the FSI codes, use the
following function:
FSI(filename[,msg])

This function returns GOOD, DUPLICATE, NOTFOUND, UNAVAILABLE,
or ERROR, depending upon the external file status message left by the
TP monitor. The following is a short example of how to use this function:
10 ACCESS X("TEST","PSW")

15 TEXT MSG(40)

20 TRAP X ON

30 GET X FIRST

40 IF X="ERROR"

50 .IF FSI(X,MSG)="UNAVAILABLE"

60 ..SHOW"FILE TEST IS UNAVAILABLE"

70 .ELSE

80 ..SHOW"FILE TEST GET FAILED:STATUS="+MSG

90 .END

110 END

A SHOW MSG after an inquiry of FSI (that is ‘SHOW FSI(REC,MSG)’
after ‘IF FSI(REC,MSG)’...) returns the external name of the VSAM file
and the external file status as returned from CICS.

The following table shows three levels of status messages. The MANTIS
or external file status is returned in the symbolic name of the file to show
the success of an operation. FSI status codes and messages are
returned by the FSI function, and the message further explains the code.

Appendix C Status functions

522 P39-5002-00

File status codes and messages
FSI codes and meanings vary depending on your operating environment.
The remaining three tables contain explanations of the FSI message
texts for different environments:

♦ CICS MANTIS. See “CICS MANTIS FSI message text descriptions
for internal and external files or views” on page 524.

♦ MANTIS for batch. See “MANTIS for batch FSI message text
descriptions for internal and external files or views” on page 525.

♦ PC CONTACT. See “PC CONTACT FSI message text descriptions
for internal and external files” on page 526.

MANTIS/external file
status

FSI

FSI message

null (“”) GOOD XXXXX DELETED RECORDS*
null (“”) GOOD null (“”)
FOUND GOOD null (“”)
NEXT (UNKEYED GET) GOOD null (“”)
NEXT (KEYED GET) NOTFOUND null (“”)
NOTFOUND NOTFOUND null (“”)
END NOTFOUND null (“”)
DUPLICATE DUPLICATE DUPLICATE REC
ERROR DUPLICATE DUPLICATE KEY
NOT OPEN UNAVAILABLE NOTOPEN
ERROR KEYLNTH ERR NOTOPEN
NOT OPEN UNAVAILABLE UNAVAILABLE
ERROR NOTFOUND NOTFOUND
ERROR ERROR ILLOGICAL
ERROR ERROR INVREQ
ERROR ERROR FULL (NO SPACE)

* Returned for a generic (ALL) DELETE request only

Extended status messages for MANTIS and external files

MANTIS Language 523

MANTIS/external file
status

FSI

FSI message

ERROR ERROR LRECL INVALID
ERROR ERROR REMOTE INVREQ
ERROR ERROR SIZE
ERROR ERROR OPEN ERROR XXX YYY
ERROR CANCELED Any text added by the External file

or SETPRAY exits
ERROR ERROR CONVERTER MISSING
ERROR ERROR I/O ERROR
ERROR ERROR INVALID ID
ERROR ERROR INVRESP
ERROR ERROR LOCKED
ERROR ERROR

XXX

UPDATE

INSERT

HANDSHAKE

GET

HANDSHAKE FILE

DELETE

FORREPLY INVALID

�
�
�

�

�
�
�

�

�

�
�
�

�

�
�
�

�

�

ERROR ERROR

UPDATE

INSERT

HANDSHAKE

GET

HANDSHAKE FILE

DELETE

ULUNSUCCESSF

�
�
�

�

�
�
�

�

�

�
�
�

�

�
�
�

�

�

None of the Above None of the Above Not Checked

CANCELED is for external files and means a request was canceled by a
user exit. (There is not equivalent RDM code that is returned.)

Appendix C Status functions

524 P39-5002-00

CICS MANTIS FSI message text descriptions for internal and
external files or views

Message text Meaning

CANCELED Operation canceled by User exit.
DUPLICATE KEY You are attempting to insert a record retrieved via an alternate index

and with a nonunique key attribute. A record with the same key
already exists.

DUPLICATE REC A record with the same key already exists.
FULL There is no space left for inserting records into the file.
ILLOGICAL XXX
YYY

Internal error. This error occurs when the other error categories do
not apply. XXX indicates the return code; YYY, the reason code.
Refer to the CICS/VS Application Programmer’s Reference Guide—
Command Level for details.

INVREQ MANTIS attempted an invalid request. Refer to the CICS/VS
Application Programmer’s Reference Guide—Command Level for
details.

I/O ERROR XXX
YYY

An error has occurred in attempting to access the file. XXX indicates
the return code; YYY, the reason code. Refer to the CICS/VS
Application Programmer’s Reference Guide—Command Level for
details.

LOCKED Resource security check has failed. Refer to the CICS/VS Application
Programmer’s Reference Guide—Command Level (“NOTAUTH”
status) for details.

LRECL INVALID The record length specified in the profile is greater than the real
record length. It should be less than or equal to the real record length.

NOTFOUND (IF
MANTIS STATUS
=“ERROR”)

Internal error. MANTIS attempted either to retrieve a record by key or
positioned itself on the record, and when it attempted to perform an
UPDATE or DELETE, the record was no longer there.

NOTOPEN MANTIS attempted to perform a GET, INSERT, UPDATE, or DELETE
on a file that was not open or disabled. Refer to CICS “NOTOPEN” or
“DISABLED” statuses.

REMOTE
INVREQ

MANTIS attempted an invalid request on a remote file. Refer to the
CICS/VS Application Programmer’s Reference Guide—Command
Level for details.

SIZE Internal error. Refer to the CICS/VS Application Programmer’s
Reference Guide—Command Level (“LENGERR” status) for details.

XXXXX DELETED
RECORDS

MANTIS performed a generic DELETE request and XXXXX records
were deleted.

Extended status messages for MANTIS and external files

MANTIS Language 525

MANTIS for batch FSI message text descriptions for internal
and external files or views

Message text Meaning
DUPLICATE REC A record with the same key already exists.
I/O ERROR XXX YYY An error has occurred when MANTIS tried to access the file.

XXX is the return code; YYY, the reason code. Refer to the
appropriate VSAM messages and codes manual for details.

LRECL INVALID The record length specified in the profile is greater than the
real record length. It should be less than or equal to the real
record length.

NOTFOUND (IF MANTIS
STATUS = “ERROR”)

When MANTIS attempted to perform an UPDATE or
DELETE, the record did not exist.

NOTOPEN Internal error. MANTIS attempted to perform a GET,
INSERT, UPDATE, or DELETE on a file that was not open.

OPEN ERROR XXX YYY XXX is the return code; YYY, the reason code. Refer to the
appropriate VSAM messages and codes manual for an
explanation.

UNAVAILABLE There is a missing DLBL or DD statement for a file MANTIS
is attempting to open.

Appendix C Status functions

526 P39-5002-00

PC CONTACT FSI message text descriptions for internal and
external files

Message text Meaning
CONVERTER MISSING PC CONTACT was unable to locate its file

conversion routine for the file.
I/O ERROR An I/O error occurred while PC CONTACT was

reading or writing a PC file.

XXX

UPDATE

INSERT

HANDSHAKE

GET

HANDSHAKE FILE

DELETE

FOR REPLY INVALID

�
�
�

�

�
�
�

�

�

�
�
�

�

�
�
�

�

�

MANTIS received a reply message (DELETE,
INSERT, GET, or UPDATE) record, file handshake
or handshake that contains an unknown reply code.
This can be caused by a logic error occurring
between MANTIS and PC CONTACT.

INVALID ID PC CONTACT detected an invalid record ID.
INVRESP MANTIS received an unreadable reply message from

PC CONTACT. This can be caused by:
♦ PC CONTACT is not executing on the PC.
♦ A communication error destroyed the reply

message.
NOTFOUND (IF MANTIS
STATUS=“ERROR”)

PC CONTACT was unable to locate the PC file.

TRUNCATED The PC file was longer than the length defined in the
file profile, so MANTIS truncated the text field. (TRAP
ON would cause a fault.)

UPDATE

INSERT

HANDSHAKE

GET

HANDSHAKE FILE

DELETE

ULUNSUCCESSF

�
�
�

�

�
�
�

�

�

�
�
�

�

�
�
�

�

�

PC CONTACT was unable to:
♦ Delete the record on the PC file.
♦ Open the PC file.
♦ Get the record from the PC file.
♦ Insert the record on the PC file.
♦ Update the record on the PC file.
♦ Establish communication with the PC.

MANTIS Language 527

D
Advanced programming techniques

This appendix presents advanced programming techniques that combine
more than one statement. The following sections include information
about External DO, program architecture, modularization, automatic
mapping, debugging, application conversion, and VSAM deadlocks.

External DO
The external DO statement allows a MANTIS program to transfer data
and control of execution to another MANTIS program with an automatic
return path to the next statement. If used optimally, external DO can
improve the efficiency of execution and make it easier to maintain your
applications.

External DO allows many programs to share common subroutines.
Using external DO, you can set up programs that can be shared by other
users, allowing them access to both internal and external subroutines.
You can also link subroutines with external DO.

To achieve the best and most efficient use of external DO, there are a
number of important factors to keep in mind while designing applications.
This appendix explains how to use external DO.

Appendix D Advanced programming techniques

528 P39-5002-00

♦ Internal DO. Allows a MANTIS program to transfer data and control
of execution to a routine within the same program and return to the
next statement following the DO. An internal routine may be passed
variables as arguments but automatically has access to all variables
defined in the running program.

♦ External DO. Allows a MANTIS program to transfer data and control
of execution to a routine outside the same program and return to the
next statement following the DO. An external routine has access
only to those of the calling routine’s variables that are passed to it as
arguments.

♦ CHAIN. Allows a MANTIS program to transfer data and control of
execution to another MANTIS program without an automatic return
path.

♦ CALL. Allows a MANTIS program to transfer data and control of
execution to a non-MANTIS program and automatically return to the
next statement following the CALL.

♦ PERFORM. Allows a MANTIS program to transfer control of
execution to a non-MANTIS program and optionally automatically
return to the next statement. Also used to initiate a background task
running a MANTIS or non-MANTIS program.

♦ COMPONENT. Identifies each component that can be assembled by
the Compose action into an executable (composed) program. This
allows a single version of the source to be included and tracked in
multiple programs.

External DO

MANTIS Language 529

The following reserved words support external DO:

♦ PROGRAM. A statement that identifies and loads the external
MANTIS programs that are to be invoked.

♦ DOLEVEL. Is a new built-in function that returns a value identifying
the level that an external program is currently executing. The root
program has a DOLEVEL of zero. With each External DO statement,
the DOLEVEL value increases by one. With each EXIT from an
external subroutine, the DOLEVEL decreases by one.

♦ EXIT. As a program editor command, EXIT allows you to exit to the
calling routine in an immediate mode of execution. As a
programming statement, EXIT continues to mark the end of a routine
and to affect the return to the routine containing the DO.

♦ RETURN. Allows a program to return to the calling routine
containing the DO from a point other than at the end (EXIT) of the
called routine.

Any program can use both internal and external DOs. Internal routines
are defined on ENTRY statements within the calling program. External
routines are defined in PROGRAM statements within the calling program.

Appendix D Advanced programming techniques

530 P39-5002-00

Using external DO
The program executed by an External DO can update variables in the
existing map set only if you pass the variable names to the program.
However, from within the program executed by an External DO, the user
can update field variables in the existing maps if they are reconversed or
if another screen is conversed over them with an UPDATE.

The argument names passed in the originating program’s DO statement
need not match the corresponding parameter names in the external
program’s ENTRY statement. The following entry accepts MAP1, MAP2,
FIELD1, and FIELD2 as M1, M2, F1, and F2:
DO PROG2(MAP1,MAP2,FIELD1,FIELD2)

...

ENTRY PROG2(M1,M2,F1,F2)

Once you pass the maps (MAP1 and MAP2), you can CONVERSE or
CLEAR them and update variables (FIELD1 and FIELD2) within the
external program (PROG2). The passed maps and variables need not
be reinitialized with SCREEN or LET statements.

In order to enter variables into previously existing maps while executing
an External DO, you must perform another CONVERSE. To enter data
in multiple maps, CONVERSE UPDATE the last conversed map. Or
CONVERSE UPDATE a map defined within the program executed by an
external DO over the existing maps. In the following example, the fields
in MAP1 may be updated from either CONVERSE:
ENTRY PROG1

.

.

.

SCREEN MAP1("A")

CONVERSE MAP1 WAIT

DO PROG2

.

.

.

ENTRY PROG2

SCREEN MAP2("B")

CONVERSE MAP2 UPDATE

External DO

MANTIS Language 531

Parameter passing
External DO works like the internal DO in parameter passing. The
following considerations apply:

♦ Data symbolic names are passed “by reference” only. Actual data
are not passed “by value.”

♦ You must define all data names before using them on a DO
statement. BIG, SMALL, KANJI, DBCS, TEXT, LET, SCREEN, FILE,
TOTAL, ACCESS, INTERFACE, VIEW, SHOW, and OBTAIN can be
used to define a variable.

♦ Data referenced by parameters are global to both the calling routine
and the subroutine. Modified values are retained on return.

♦ A maximum of 255 parameters can be passed in one DO statement.

♦ Only passed parameters can be referenced outside the routine where
they are defined.

♦ Reserved words, literals, expressions, or individual elements of an
array (e.g., A(5,4)) cannot be passed as parameters. However, the
entire array (e.g., A) can be passed.

♦ SCREEN, FILE, ACCESS, TOTAL, VIEW, and INTERFACE
variables can be passed as parameters, but the individual fields
within these are not available unless the individual fields are passed
as parameters.

♦ Parameter passing can affect automatic mapping. See “External DO
programming guidelines” on page 538 for details.

Program architecture
The following figure illustrates the activity of a program that contains an
external DO. When the PROGRAM statement is executed, MANTIS
loads the program into a Local Program Chain.

When MANTIS encounters a DO statement, it locates the program in the
Local Program Chain and allocates new data work areas. Because
MANTIS is reentrant, the program involved by the DO statement is
executed directly from the Local Program Chain.

Appendix D Advanced programming techniques

532 P39-5002-00

When the external routine hits EXIT, its program and data work areas are
released. The program is retained in the stack until it is needed again.
Processing resumes with the statement following the DO in the previous
level’s program and data work areas.

PGMA

PGMB

PGMC

PGMD

PGME

PGMF

UNUSED

2-6k
each

Local Program Chain

Vocabulary
Work
Area

0

Data
Work
Area

0

Data
Work
Area

5

A maximum of five DOLEVELs in addition to the zero level are allowed.
The number of external programs executed at each level is unlimited.
However, memory storage utilization increases because each program is
loaded and kept on the program stack. The program stack holds the
code for all programs that have been defined by execution of a
PROGRAM statement. The program stack is only released when you
issue a “QUIT”, “NEW”, or “CHAIN” in programming mode, or “STOP”,
“KILL” or “CHAIN” on a program running outside programming mode.
Individual programs can be removed by RELEASE program-name.

External DO maintains context for the task, along with all associated
program storage, in main memory for as long as possible. In this way
external DO reduces I/O to the MANTIS cluster.

External DO

MANTIS Language 533

Internal DO vs. external DO vs. CHAIN
This section describes the use of external DO, internal DO and CHAIN.
A basic understanding of the characteristics of each will help you apply
the specific programming guidelines contained in the next section.

The following figure is an example of an internal DO. This is a main line
routine bounded by an ENTRY and EXIT statement. The DO statements
indicate subroutines that are physically resident with the calling routine.

The execution involves one program work area (up to 64K), one data
work area (up to 64K) and one VWA (limit 2048 variables). Up to 255
parameters are passed, but all (up to 2048 variables) can be global.
MANTIS stores the program as one entity.

Program Work Area Data Work Area

Vocabulary

Main Routine
(VALIDATIONPROG)

Subroutine 1
(EDIT_DATE)

Subroutine 1
(NUMERIC_CHECK)

ENTRY VALIDATIONPROG

.

.

.

DO EDIT_DATE(MAP,,,)

.

.

.

EXIT

Appendix D Advanced programming techniques

534 P39-5002-00

ENTRY EDIT_DATE(,,,)

.

.

.

DO NUMERIC_CHECK(,,,)

.

.

.

EXIT

ENTRY NUMERIC_CHECK(,,,)

.

.

.

DO MARK FIELD(,,,)

.

.

.

EXIT

ENTRY MARK_FIELD(,,,)

.

.

.

EXIT

The following figure is an example of an external DO where the Shared
Pool is not used. You must use ENTRY and EXIT statements around
each physical program. (Dash lines indicate physical program
boundaries.)

In this example, each of the four program areas can be up to 64K
allowing more space for program logic. Each data work area can also be
64K, and each Vocabulary Work area can be up to 64K. All user words
are local to their own program. Therefore, everything the subroutine uses
from its caller must be defined on the ENTRY statement. The parameter
list of user words is by reference only. No data is moved to an external
data area. Up to 255 parameters can be passed; variables not passed
are local to each routine.

Each time a DO is executed, a new data area for the subroutine is
allocated and rebuilt.

External DO

MANTIS Language 535

External program code is executed directly from the Local Program Chain
and is retained in the Local Program Chain when you EXIT. External
program data area is released at EXIT. The PROGRAM statement does
the actual external program loading onto the Local Program Chain.

Vocabulary Data

Local Program Chain

Vocabulary

Mainline

EDIT_DATE

MARK_FIELD

NUMERIC_CHECK

ENTRY VALIDATEPROG

DO EDIT_DATE(MAP,,,)

DO MARK_FIELD

EXIT

ENTRY EDIT_DATE(,,,)

DO NUMERIC_CHECK(,,,)

EXIT

ENTRY NUMERIC_CHECK(MAP,,,)

DO MARK_FIELD(,,,)

EXIT

ENTRY MARK_FIELD(,,,)

EXIT

Appendix D Advanced programming techniques

536 P39-5002-00

A program is not added to the Local Program Chain when the program
already resides in the Shared Pool.

The following figure illustrates a program using the CHAIN statement. An
ENTRY and EXIT statement is required around each physical program.
(Dash lines indicate physical program boundaries.)

As in external DO, programs can be up to 64K. Each data work area and
each program work area can be up to 64K. Each user word table can
contain 2048 variables. Up to forty variables can be passed.

When MANTIS encounters a CHAIN statement, it fetches the program
from the library or shared pool. A new data area is allocated and built.
Parameters are copied from the old data work area into a new data work
area. When new areas are established, the old program and data work
areas are released.

MANTIS
Cluster

Old Program
Work Area

Old Data
Work Area

Vocabulary

CHAIN"..."

Old Data
Work Area

New Program
Work Area

Vocabulary

New program

fetched

Local Program Chain

ENTRY OLD

CAIN "NEW,A,B,C

EXIT

ENTRY NEW (X,Y,Z)

.

.

.

EXIT

External DO

MANTIS Language 537

Referring to the application on the left in the following figure as an
example, let’s examine how using different statements affects the
number of I/O accesses against the directory. If you use CHAIN to link
PGM1, PGM2 and PGM3, each time CHAIN is encountered MANTIS
fetches the new program from the library. Complex variables (SCREEN
and FILE) must be defined in each new data work area. If you use
internal DO, you decrease the number of I/O accesses since everything
you need to execute is loaded once, which saves fetching programs and
screens.

External DO (the figure on the right) allows you to define in the main
program variables that are used in all routines. After definition in the
main program, they can be passed to subsequent routines. For example,
files F1, F2 and F3 are defined in PGM1, causing one I/O access and
can be passed to PGM2 and PGM3 with no I/O access required. The
only I/O accesses required are those to fetch PGM2 and PGM3 the first
time they are refreshed.

ENTRY PGM1
SCREEN S1

EXIT

ENTRY PGM2
SCREEN S2

EXIT

FILE F1
..

GET F1

ENTRY PGM3
SCREEN S3

EXIT

FILE F1

..

GET F1

FILE F2

..

GET F2

ENTRY PGM1
SCREEN S1, S2, S3

EXIT

ENTRY PGM3, (F1, F2)

EXIT

..

GET F1
..

GET F2

FILE F1, F2, F3
PROGRAM PGM2

ENTRY PGM2, (F1, F2)

EXIT

..

GET F2

PROGRAM PGM3

Appendix D Advanced programming techniques

538 P39-5002-00

External DO programming guidelines
Always use external DO with the following guidelines in mind.

Program statement
Without the program in the shared pool, when the PROGRAM statement
is executed, storage is allocated and library I/O occurs to load the
program into the program stack. You may defer the execution of the
PROGRAM statement as long as possible to avoid unnecessary storage
acquisition and initial I/O on the MANTIS cluster. Do not group all
PROGRAM statements at the start of the main program. The logic of the
main program can preclude execution of some of the named programs,
thereby wasting the storage that these PROGRAM statements acquire.
The best method is to pair the PROGRAM statement and its
corresponding DO. Note that encountering a PROGRAM statement the
second time during program execution involves minimal overhead.

The following examples illustrate the suggested way to use external DO
in your program:

DON’T
10 PROGRAM PROG_1("PROGRAM_1",PASSWORD)

20 PROGRAM PROG_2("PROGRAM_2",PASSWORD)

30 PROGRAM PROG_3("PROGRAM_3",PASSWORD)

.

.

.

100 IF OPTION=1

110 .DO PROG_1

120 ELSE

130 .IF OPTION=2

140 ..DO PROG_2

150 .ELSE

160 ..DO PROG_3

170 .END

180 END

External DO

MANTIS Language 539

DO
100 IF OPTION=1

110 .PROGRAM PROG_1("PROGRAM_1",PASSWORD)

120 .DO PROG_1

130 .ELSE

140 .IF OPTION=2

150 ..PROGRAM PROG_2("PROGRAM_2",PASSWORD)

160 ..DO PROG_2

170 .ELSE

180 ..PROGRAM PROG_3("PROGRAM_3",PASSWORD)

190 ..DO PROG_3

200 .END

210 END

Group other entities such as screens or files with the PROGRAM
statement if they are passed to that program. For example:
WHEN KEY="PF1"

.PROGRAM PROG_A("PROGRAMA",PASSWORD)

.SCREEN MAP_A("MAPA")

.FILE RECORD_A("FILEA",PASSWORD)

.DO PROG_A(MAP_A,RECORD_A)

END

It is best to defer execution of statements that cause library I/O
(SCREEN, FILE, ACCESS, TOTAL, VIEW, INTERFACE) if they are not
certain to be needed. This is even more important with the PROGRAM
statement because of the potential program size. When using HPO Bind,
you may want to include statements like SCREEN or FILE where they
can become HPO bound.

Appendix D Advanced programming techniques

540 P39-5002-00

Modularization
Many small externally done programs in the system cause overhead.
Each program requires at least one I/O to the MANTIS cluster, plus extra
processing and storage for each PROGRAM and DO statement. When
you have many small routines to execute, it is advisable to group related
routines into one program, then pass a parameter to the program,
indicating the routine to be executed. Or you can pass control to the
main routine in the program, and have it internally DO the subordinate
routines.

Where the system has been designed via a structured methodology,
multiple related modules can be combined into one program. For
example, the following figure shows how you can combine 14 separate
modules into three programs. In other words, do not make every module
a separate program. Instead, mix internally and externally done routines.

Routines that are used throughout an application, or on a shopwide
basis, can still be placed internally in a program and maintained in one
place if the Component Engineering Facility is used. In maintaining the
components, you can cut down on the overhead when you are making
widespread changes. Refer to MANTIS Program Design and Editing,
OS/390, VSE/ESA, P39-5013, for more information.

MAIN
ROUTINE

Get
Transaction

Process
Request

Distribute
Output

Send
Responses

Update
Fields

Post
Results

Print
Audit

Format
Output

Obtain
Screen

Edit
Data

Validate
Data

Security
Check

Check
Codes

External DO

MANTIS Language 541

Automatic mapping
In order for automatic mapping of variables to occur, you must define
complex statements (SCREEN, FILE, and so on) at the same level, or
pass them as parameters. Each subvariable is local to the routine in
which it’s defined. The same is true of keys on INSERT or GET
statements.

Examples

When defining complex variables at the same level, the fields in the
record to be inserted are automatically mapped from the screen. The
CONVERSE could be in either SUB1 or the calling routine with the same
results.
30 SCREEN MAP("X"):|CONTAINS F1,F2,F3

40 FILE REC("Y","P"):|CONTAINS F1,F2,F3

50 DO SUB1(MAP,REC)

automatically maps F1, F2, and F3 between MAP and REC.
10 ENTRY SUB1(SC,FI)

20 .CONVERSE SC

30 .INSERT FI

40 EXIT

In another example, F1, F2 and F3 are defined in the main routine. On
entry to the subroutine, SC, F2 and A2 are defined as arguments in the
subroutine. When the FILE statement executes, MANTIS looks for F1
and doesn’t find it, so it defines one. When it hits F2, it finds an F2
(because it appeared on the ENTRY statement) and connects to it.
When F3 is hit, MANTIS doesn’t find it, so it defines another F3 (not the
one in the main routine). A2 in the subroutine is the local name for the
calling routine’s F3 and shares its data area.

The CONVERSE statement fills in all the variables in SC. The only
variable automatically mapped in the CONVERSE and INSERT is F2.

Appendix D Advanced programming techniques

542 P39-5002-00

Because F2 is defined as an argument on the ENTRY statement, it is
automatically mapped between the file and the screen. Even though F3
is passed as a parameter, the name F3 is not known to the subroutine
SUB1. Therefore, the FILE statement establishes a local variable F3 (as
well as F1) in SUB1.
10 ENTRY MAINLINE

30 SCREEN MAP("X"):|CONTAINS F1,F2,F3

50 .DO SUB1(MAP,F2,F3)

10 ENTRY SUB1(SC,F2,A2)

20 FILE REC("Y","P"):|CONTAINS F1,F2,F3

30 CONVERSE SC

40 .INSERT FI

The diagram below shows what happens to the passed variables.

F1 (local)
F2 (local) F3 (local)

F1 (local) F2 (F2 of
mainline)

A2 (F3 of
mainline)

F3 (local)

same not same

External DO

MANTIS Language 543

Terminal I/O
If you place a SHOW statement in a lower level of your hierarchy, you
can lose data. The first SHOW statement must be at the same level of
the first I/O within your program. If a SHOW is in a lower level without a
WAIT statement, the SHOW is deleted.

If a view is defined in a caller and passed as a parameter on an external
DO, both the view and the field-name must be passed.

Also be advised that when you use a CONVERSE SET, CONVERSE
WAIT, or a CONVERSE UPDATE with a screen defined at a lower level,
when the program exits that level the whole map set is deleted.

Entity definition
Avoid entity definition within (non-HPO-Bound) external programs
because this causes recurring I/O’s against the directory file and rebuilds
the user word table. Declare all complex variables (SCREEN, FILE,
TOTAL, ACCESS, and so on) as high up as possible in the hierarchy of
external DOs. However, keep in mind the constraints for automatic
mapping mentioned in “Automatic mapping” on page 541.

The data work area is released on EXIT and reacquired on each DO. If
you have (non-HPO-Bound) complex statements in subordinate routines,
they must be refetched from the library (causing I/O) and rebuilt (causing
CPU cycles used) each time the program is done. Even if you cannot
define these entities at the top level (DOLEVEL=0), the higher you can
place these statements, the better.

However, you can use external DO to your advantage when you need to
redefine variables. For example:
ENTRY MAIN

.TEXT FILE_NAME(33),FILE_PASSWORD

.UNTIL KEY="CANCEL"

..SHOW "ENTER FILE NAME AND PASSWORD TO CLEAR"

..OBTAIN FILE_NAME,FILE_PASSWORD

..DO SUB(FILE_NAME,FILE_PASSWORD))

,,SHOW FILE_NAME,"SUCCESSFULLY CLEARED"

.END

EXIT

ENTRY SUB(F,P)

.FILE REC(F,P)

.DELETE REC ALL

EXIT

Appendix D Advanced programming techniques

544 P39-5002-00

If SUB is an internal routine, the symbolic name, REC, is defined on the
first iteration. Subsequent iterations will not redefine REC, so only one
file can be used. If SUB is an external routine, each execution starts with
a new data work area, so REC will be defined on each iteration, making it
possible to clear any number of files.

Frequency of calls
The more often your application uses a subroutine, the greater advantage
you have using DO over a CHAIN statement (with a CHAIN to return).
This is because the calling routine context is maintained, and the called
routine does not need to be fetched from the library each time.

However, if an external routine can be designed to do as much work as
possible per call, performance is improved. For example, if a routine can
be called once to validate all elements of an array, it is better than calling
repetitively for each element to be validated. Very heavily used routines
are best performed as internal routines.

External DO

MANTIS Language 545

Debugging
Using external DO in programming mode allows you to debug
interactively. Use the EXIT statement to move to the previous or calling
routine. To get back to the subroutine after exiting, enter RUN and the
line number of the DO statement. Use the “PROGRAM==>” or “EDIT—”
heading to determine the program that you are in.

Use SHOW DOLEVEL to see what level is executing. You can modify
and replace programs at any level. The revised version is executed in
the next run. Note that if you don’t SAVE or REPLACE the copy in the
workspace before exiting, your changes go away upon EXIT.

Remember that arithmetic and text variables, lists or arrays must
correspond in datatype between the ENTRY-EXIT and the DO or CHAIN
statements.

Conversion
When deciding whether to convert existing applications using chaining to
use external DO, remember that with external DO all variables must be
passed. Any complex variables (SCREEN, FILE, or any variable that has
other subvariables fetched from the library) must pass subvariables on
ENTRY and DO.

Use external DO:

♦ When control must be automatically returned to where it was
invoked.

♦ When a routine is common to many programs.

♦ When user table limits (2048 variables) are reached.

♦ When program size is exceeded.

♦ When data area size is exceeded.

♦ When excessive amounts of chaining occur between a number of
small programs.

Appendix D Advanced programming techniques

546 P39-5002-00

The internal DO is best used:

♦ When control must be returned to where invoked.

♦ When many data items must be shared.

♦ When a routine is used heavily in the program.

♦ When a routine is small in size.

♦ When a routine does not need to be called from other programs.

Continue to use CHAIN:

♦ When control can be returned to the beginning of a routine.

♦ When a return path is not necessary.

♦ When the return path is unlikely or infrequent.

Use components:

♦ When external DO is not required or desired.

♦ When the common code is not a logically complete unit (that is, when
it is a program fragment).

♦ When program fragments are shared or common among many
programs.

♦ When program fragments are shared and are likely to change.

♦ To include in-line code, internal subroutines, or related groups of
internal subroutines.

External DO

MANTIS Language 547

Program size
♦ The maximum program size is 64K. However, making every

externally done program in the system close to the maximum
program size tends to stress the system.

♦ It is a good idea to use moderation in the size of your programs. Try
not to go to either extreme, that is, a few very large programs or a
great number of small programs. Use the PROGFREE built-in
function to determine program size.

♦ If you have many large programs occupying memory as part of the
hierarchy of external DOs, the amount of storage needed to run
MANTIS applications systems could increase. CICS MANTIS users
may need to increase the size of the CICS Dynamic Storage Area.

Appendix D Advanced programming techniques

548 P39-5002-00

Programming techniques
Using external DO, you can use the same file statement to reference
many file descriptions because a new FILE statement is created for each
call. For example:

Program 1
.

.

PROGRAM FILENEW("PGM2","PASSPGM2")

.

.

.

.

FILE_ID=LIBNAMEX

INSERT_LEVEL=INSERT_PASSWORD

DO FILENEW(FILE_ID,INSERT_LEVEL)

.

.

.

Program 2
ENTRY PGM2(FILE_NAME,PSSWD)

.

.

.

FILE F(FILE_NAME,PSSWD)

.

.

.

You can change FILE_ID and INSERT_LEVEL in program 1 before any
DO statement. MANTIS creates a new file statement for each call. This
also works for other complex variable type (such as SCREEN, FILE,
ACCESS,).

External DO

MANTIS Language 549

Rollout/Rollin
In the CICS pseudoconversational environment, avoid coding any
statement that causes a terminal I/O or context save in any externally
done routine, such as SHOW, WAIT, PROMPT, PERFORM,
CONVERSE and OBTAIN in an externally done routine. In these
environments all program context from the currently executing routine,
including all previous active levels back to the main routine, has to be
rolled out and back in at terminal I/O. Because external DO can maintain
a larger task context than internal DO, rolling out and in against this extra
context can have a negative impact on performance.

It is better to handle all screen I/O in the main program, and handle all
calculations, conversions and editing in externally done routines. This is
not always possible. If external routines must contain such commands,
try to place them in the higher level external routines rather than the lower
level routines, as shown in the following figure:

MAINLINE
DO LEVEL 1

LEVEL 1
DO LEVEL 2

LEVEL 2
DO LEVEL 3

LEVEL 3

Best if CONVERSE, COMMIT,
etc., done here

Or here, if you must

Avoid them here

Avoid them here even more

Appendix D Advanced programming techniques

550 P39-5002-00

VSAM deadlocks
A VSAM deadlock is created when two transactions each wait for a
resource held by the other transaction. For example:

♦ Transaction A holds record 1

♦ Transaction B holds record 2

♦ Transaction A requests record 2 and waits

♦ Transaction B requests record 1 and waits

VSAM Files
When a record from a VSAM file is held, then the control interval that
contains the record is held, therefore, all the records in the control interval
are unavailable. For recoverable files in CICS, the control intervals are
held for the duration of the logical unit of work.

In order to free the held control interval, a COMMIT or RESET instruction
must be executed.

For nonrecoverable files, the control intervals are held for the duration of
the execution of the commands INSERT, UPDATE, and DELETE.

The instructions that hold a control interval are the following:

♦ INSERT

♦ DELETE

♦ UPDATE

♦ ENQUEUE (with GET)

VSAM deadlocks

MANTIS Language 551

The commands that free a control interval by completing a logical unit of
work are as follows:

♦ COMMIT

♦ OBTAIN*

♦ RESET

♦ PROMPT*

♦ CONVERSE*

♦ WAIT*

♦ SHOW (filling up the screen)

* When COMMIT ON is in effect.

When the MANTIS transaction ends, all the control intervals are freed.

Deadlocks on GET NEXT
When you read a file using the GET NEXT statement with or without a
key, a GET FIRST, GET LAST, or a GET PRIOR, MANTIS generates the
following commands:
EXEC CICS START BROWSE

EXEC CICS READNEXT

A START BROWSE holds a string for the VSAM file. An END BROWSE
frees the string.

Appendix D Advanced programming techniques

552 P39-5002-00

The MANTIS statements that generate an EXEC CICS END BROWSE
are listed in the categories below:

♦ Statements that free all strings for a transaction:

- CALL

- COMMIT

- CONVERSE

- OBTAIN

- PERFORM

- PROMPT

- RESET

- SHOW (when the screen is full; forcing I/O)

- WAIT

♦ Statements that free ONLY strings held by a previous GET:

- DELETE

- GET EQUAL with KEY

- INSERT

- UPDATE

If the GET NEXT reads to the end of the file, the string is freed by an
END-BROWSE at that time.

VSAM deadlocks

MANTIS Language 553

Rules for avoiding deadlocks
♦ Put the commands that hold control intervals as close as possible to

the instructions that free them.

♦ Applications that hold several records at the same time must always
hold them in the same order; for example, ascending key sequence.

♦ Programs that update more than one file must always update them in
a predefined order. Each program must update the files in the same
sequence as another program using the same files.

♦ The ENQUEUE resulting from a GET with ENQUEUE is released by
any of the following statements:

- COMMIT

- CONVERSE

- DELETE

- DEQUEUE file-name

- INSERT

- OBTAIN

- RESET

- SHOW

- UPDATE

- WAIT

♦ Never code more than one ACCESS command for the same file in a
program if local shared resources are being used.

For additional information concerning deadlocks, refer to the CICS/VS
Application Programmers Reference Manual.

Appendix D Advanced programming techniques

554 P39-5002-00

MANTIS Language 555

E
Enhanced screen and program design

MANTIS has a logical interface between itself and the physical device
environment, thereby removing IBM 3270 terminal dependence. The
MANTIS Screen Design Facility enables you to design and save screens
for use in your application. The MANTIS Program Design Facility allows
you to build programs that send your screen designs to physical devices.
The following figure illustrates the interaction among the MANTIS cluster,
the MANTIS Logical Terminal Interface, and the physical devices:

MANTIS
Cluster

Screen
Design

Printer

Terminal
MANTIS
Logical

Terminal
Interface

Physical
Device
Driver

Progam
 Design

MANTIS uses two steps to send a map (screen) to a terminal or printer.

1. Screen designs are sent to the MANTIS Logical Terminal Interface
through programming commands (such as CONVERSE).

2. MANTIS communicates with the Physical Device Driver to send
output to one or more physical devices (terminal or printer), as
appropriate. The Physical Device Driver ignores specified features
not supported by the physical device.

Appendix E Enhanced screen and program design

556 P39-5002-00

Designing screens
The MANTIS Screen Design Facility supports a logical display of 255
rows by 255 columns which enables you to design and converse screens.
Your physical screen acts as a moveable window on the logical display.
By using PF keys, you can scroll around the logical display.

The following figure illustrates the design area used to create a screen.
The bottom two lines of this screen are reserved for the message line,
the row/column coordinates (window mode only), the command line, and
the key simulation field. MANTIS also reserves the first three columns of
the design area for the row scale line. You can remove this row scale
line to make use of the full screen width, if appropriate.

.

.

.

.
+
.
.
.
.
1
.
.
.
.
+
.
.
.
.
2
.
.
###
########

To create the screen, use the Create or Update a Screen option from the
Screen Design Facility. Next, define attributes for each data field on the
screen. As part of field definition, you can specify multiple vertical or
horizontal occurrences of a particular field. Also, you can indicate
whether a field will appear in a particular color or intensity. Extended edit
characteristics allow you to specify edit values for a field which reduces
edit code in your program. You can designate other attributes on a map
level.

Designing screens

MANTIS Language 557

The following table shows the MANTIS Screen Design field attributes
(described in more detail in MANTIS Facilities, OS/390, VSE/ESA,
P39-5001):

Field attribute Description
FIELD NAME The name used by MANTIS to refer to the field.
LENGTH The length of the field. If the length of the field has been

specified using hash characters (#) on the screen design,
that length will be displayed here. Some designers enter
the field length here and not on the screen design, again
highlighting the flexibility of MANTIS.

ROW/COLUMN MANTIS supplies the row and column position of the field
on the screen.

DATA TYPE Data entered in the field must be text, numeric, or DBCS.
INTENSITY The field will be bright (highlighted), display normally, or be

hidden (not displayed).
CURSOR Positions the cursor in the field when screen is displayed.
PROTECTED If PROTECTED=Yes then the field is read-only; if No, then

the field can be used for display and data entry.
AUTOSKIP Automatically skips the cursor to the next unprotected field

when user fills the current field.
UPPERCASE If UPPERCASE=Yes, data-entry text fields will be translated

to forced uppercase. If No, the field will accept upper and
lowercase characters.

Appendix E Enhanced screen and program design

558 P39-5002-00

Field attribute Description
BLINKING Data in the field will blink when displayed.
REVERSE VIDEO If Yes, the field will be displayed as dark characters on a

light background or vice versa.
HIGHLIGHT Field will be highlighted upon display.
COLOR Specifies the color of the display if the terminal supports

color.
MODIFIED TAG Indicates whether the field has been modified.
DETECTABLE If Yes, the field is pen-detectable (if terminal supports pen-

detectable capabilities).
BOX Allows you to draw a box around a field if the terminal

supports this feature.
SO/SI DBCS support terminals only. Allows DBCS and EBCDIC

characters to reside concurrently in a text variable.
REPEATS* Indicates how many times a field will occur horizontally and

vertically on the screen and the space between
occurrences. Repeat specifications can also be set using
the Update Repeat Specifications option on the Screen
Design Facility menu.

EXTENDED EDIT If EXTENDED EDIT=Yes, the field has additional attributes
such as default values, range checking.

* You can also specify repeats in the Update Repeat Specifications option in the Screen Design

Facility.

Designing screens

MANTIS Language 559

The following table shows the MANTIS Screen Design map attributes
(described in more detail in MANTIS Facilities, OS/390, VSE/ESA,
P39-5001):

Map attribute Description
MAP DOMAIN Shows the maximum row and column coordinates for the

current screen domain.
BLANK FILL CHARACTER Specifies the character you want to use for blank fills.
SOUND ALARM Indicates whether or not you want MANTIS to sound an

alarm each time you converse the screen.
PROTECT BOTTOM LINE Indicates whether you want MANTIS to protect the bottom

line of the screen (Command Line and Key Simulation
Field).

MASK CHARACTER Specifies the character you want to use as the mask
character to identify fields.

FULL DISPLAY Indicates whether or not you want MANTIS to expand the
screen size to the dimensions of the current terminal,
including the bottom two lines of the screen.

OPAQUE MAP Indicates whether or not a screen (map) will be opaque
(rather than transparent) when it is conversed.

KEEP MAP MODIFIED Prevents MANTIS from clearing the modified data tags of
a specified screen.

SEND ALL FIELDS Indicates whether all fields or just nonheading (data)
screens are sent to the terminal.

RESET Returns all field-level attributes to the original
specifications made in Screen Design.

Appendix E Enhanced screen and program design

560 P39-5002-00

Special considerations for field attributes:

♦ You can suppress the last two lines on a displayed screen and
extend default vertical repeats by specifying the FULL DISPLAY
attribute in Library Functions. If you specify FULL DISPLAY, error
messages will not display at the bottom of your screen.

♦ You can protect only the command line and key simulation field from
input with the Protect Bottom Line attribute in Library Functions. This
attribute has no effect if you specify the Full Display attribute. (Note
that you cannot use the KILL mechanism to terminate a looping
application program if you specify either of these attributes. We
recommend that you not use these attributes just to inhibit use of the
KILL word.) With the Protect Bottom Line attribute in effect, the user
is unable to enter window mode. Therefore, do not specify this
attribute for a screen that is larger than the physical display.

♦ Changing the blank-fill character from a vertical bar to another
character permits you to use the standard blank-fill character (the
vertical bar) as an output character.

MANTIS saves the blank-fill character with the screen design and returns
it when you fetch the screen.

Building a map set in your program

MANTIS Language 561

Building a map set in your program
Individual maps can be added to the logical display to form a map set.
Maps within a map set are displayed according to their entry sequence
into the map set as specified in programming statements and overlay
each other. The top map in a map set is known as the active map.
Every field on this map that falls within the current window is displayed.
All other maps in the map set are known as passive maps.

The position of a map within the map set is controlled by the first set of
parameters on the CONVERSE statement.

CONVERSE [(,)]
WAIT
SET
UPDATE

 WINDOW
DISPLAY [(,)]

RELEASE

screen - name row1 col1 row1 col1
�

�

�
�

�

�

�
�

�

��
�

��

�

�

�
�
�
�

�

�

�
�
�
�

The WAIT, SET, and UPDATE options on the CONVERSE statement
determine whether a physical I/O occurs (whether the map is displayed)
and whether the displayed input fields on the passive maps are protected
or unprotected. A CONVERSE statement overrides an
ATTRIBUTE(PROTECTED) statement in your program, which overrides
a protected field attribute specified in Screen Design.

Unless designed as opaque, all maps are translucent, meaning that, all
fields not completely overlaid by the active map display through the active
map. When conversing maps, the following rules govern whether you
can update partially displayed fields on a passive map:

♦ Fields on a passive map that are partially displayed because they are
overlaid by the active map cannot be updated.

♦ Fields that are partially displayed because they overlap the physical
screen boundary can be updated.

Appendix E Enhanced screen and program design

562 P39-5002-00

The CONVERSE statement with the WAIT, SET, and UPDATE options is
described as follows.

CONVERSE [(,)]
WAIT
SET
UPDATE

 WINDOW
DISPLAY [(,)]

RELEASE

screen - name row1 col1 row2 col2
�

�

�
�

�

�

�
�

�

��
�

��

�

�

�
�
�
�

�

�

�
�
�
�

♦ CONVERSE screen-name without a WAIT, SET, or UPDATE creates
a new map set. This map set contains only the named screen and
causes a physical I/O to occur, thereby displaying the map on your
terminal. The row/column coordinates (the default is row 1, column
1) specify the row and column positions for a screen.

♦ CONVERSE screen-name WAIT adds the named map to the current
map set but does not cause a physical I/O to occur. The named map
is not displayed.

♦ CONVERSE screen-name SET adds the named map to the current
map set and causes a physical I/O to occur. This is the active map in
the map set, that is, it appears on top of the other maps. This means
overlapping fields from the active map have display precedence.

♦ CONVERSE screen-name UPDATE acts the same as CONVERSE
screen-name SET, except all data entry fields that are fully displayed
from underlying maps are unprotected. Unprotected fields that
extend beyond the boundaries of the physical screen do not need to
be completely displayed to be updated.

♦ CONVERSE screen-name RELEASE removes the specified map
from the map set. If a CONVERSE map RELEASE is issued for a
specified map that is not in the map set, MANTIS issues a fault.

The final map display may consist of a single map or a composite set of
maps positioned dynamically within the logical display. If the map display
is larger than the physical screen, the operator can treat the physical
screen as a window, moving it around the logical display by using window
mode PF keys.

Building a map set in your program

MANTIS Language 563

The CONVERSE statement and mapping examples
The following screen designs show how one screen overlays the other:

X X X X

Report Screen Division Subtotals

When you converse the maps into one display, you obtain the following
results:

Report Screen

Division Subtotals

X X X X

Appendix E Enhanced screen and program design

564 P39-5002-00

The following maps and program illustrate options of the CONVERSE
statement and how active and passive maps are affected:

X X X
X X X
X X X
X X X

X X X
X X X
X X X
X X X

MAP1
Y Y Y
Y Y Y
Y Y Y
Y Y Y

Y Y Y
Y Y Y
Y Y Y
Y Y Y

MAP2

10 ENTRY CLIENT_ENTRY

20 .SCREEN MAP1("NEW_CLIENT")

30 .SCREEN MAP2("PAGE_2")

.

.

.

70 .CONVERSE MAP1

.

.

.

120 ...IF FIELD="Y"

160DO EXTRA_INFO

.

.

.

300 ENTRY EXTRA_INFO

310 .UNTIL MAP2="CANCEL"OR MESSAGE=""

320 ..CONVERSE MAP2(10,45)SET

.

.

.

400 .IF MAP2="ENTER"

410 ..INSERT REC

420 ..CLEAR

Building a map set in your program

MANTIS Language 565

The CONVERSE statement in line 320 produces the following result.
Note the fully displayed fields on MAP1 are protected because of the SET
parameter used in the CONVERSE statement. Also, the last field on
MAP1 is overlaid by the first field on MAP2.

X X X
X X X
X X X
X X X

X X X
X X X

MAP1

Y Y Y
Y Y Y
Y Y Y
Y Y Y

Y Y Y
Y Y Y
Y Y Y
Y Y Y

MAP2

Below is a variation on the CONVERSE statement in line 320. This
variation uses the UPDATE option instead of the SET option. Note that
the fully displayed input fields on MAP1 are unprotected.

X X X
X X X
X X X
X X X

X X X
MAP1

X X X
Y Y Y
Y Y Y
Y Y Y
Y Y Y

Y Y Y
Y Y Y
Y Y Y
Y Y Y

MAP2

CONVERSE MAP2(10,45) UPDATE

Current Window

Active Map

X X X

You can specify an opaque map in screen design. The active opaque
map completely overlays the parts of the passive map it covers, as
shown in the following example:

X X X
X X X
X X X
X X X

X X X
MAP1

Y Y Y
Y Y Y
Y Y Y
Y Y Y

Y Y Y
Y Y Y
Y Y Y
Y Y Y

MAP2

Current Window

Active Map

X X X

Appendix E Enhanced screen and program design

566 P39-5002-00

Executing a CONVERSE MAP1 UPDATE again produces the following
result:

X X X
X X X
X X X
X X X

X X X
MAP1

X X X
Y Y Y
Y Y Y
Y Y Y
Y Y Y

Y Y Y
Y Y Y
Y Y Y
Y Y Y

MAP2

Current Window

Active Map

X X X

As you are building your map sets, keep the following attributes in mind.
You can set these attributes with the ATTRIBUTE statement (see
“ATTRIBUTE (Statement)” on page 102 for more information), and you
can set them in Screen Design (refer to MANTIS Facilities, OS/390,
VSE/ESA, P39-5001, for more information).

KEEP MAP MODIFIED
RESET MAP MODIFIED

Description Prevents MANTIS from clearing the modified data tags of a specified
screen.

Format KEEP MAP MODIFIED or RESET MAP MODIFIED

Considerations

♦ Specify KMM to prevent MANTIS from clearing modified data tags or
(MDT’s) of the specified screen or MODIFIED (map,field) function.
Ordinarily, MANTIS clears MDT’s of all maps in the map set for a
CONVERSE UPDATE, or for the active map in the case of a
CONVERSE SET. If the MDT’s are cleared, a previously modified
map returns FALSE for the MODIFIED function. If a map has
attribute “KMM”, then once modified, the MODIFIED function always
returns TRUE. For an explanation of maps and map sets, see the
CONVERSE statement.

♦ Specify Reset Map Modified (RMM) to turn off KMM and restore
ordinary functionality.

♦ Use KMM if you will converse additional screens in the map set (e.g.,
pop-ups) and want to retain the MODIFIED setting for additional
validation after the CONVERSE of the additional screen.

Building a map set in your program

MANTIS Language 567

Multiple images of a single screen design
A screen can only be conversed once in a map set. If you converse a
screen a second time and specify row and column coordinates different
from those in the first CONVERSE statement, the screen moves to the
new location within the map set. In the following example, the
CONVERSE statement in line 210 moves MAP1 from its original position
(1,1) to its new position (60,1):

MAP2MAP1

MAP3

MAP2

MAP1

MAP3

110 CLEAR
120 CONVERSE MAP(1,80)
130 CONVERSE MAP WAIT
140 CONVERSE MAP(30,1) SET
.
.
.

210 CONVERSE MAP1(60,1) WAIT

Appendix E Enhanced screen and program design

568 P39-5002-00

If you want one screen to appear multiple times within one logical display,
you must define a new SCREEN symbolic variable for it each time you
want it to appear. In the following example, MAP1 and MAP2 reference
the same screen design entity:

10 SCREEN MAP1("NAME"),MAP2("NAME")

.

.

.

100 CONVERSE MAP1 WAIT

110 CONVERSE MAP2(45,1)WAIT

120 CONVERSE MAP3(15,1)SET WINDOW(15,1)

Each field on a screen has a unique name and value. If you are using
the same screen design more than once in your logical display, assign
multiple values to a field that appears in each screen occurrence. To do
so, you need to prefix each successive occurrence of the screen as
follows:
100 SCREEN MAP1("NAME",PREFIX)

In the previous example, MAP1 is the prefix that needs to be changed for
each occurrence of the screen.

Windowing

MANTIS Language 569

Windowing
The CONVERSE statement can be extended to determine the physical
display position of the map set. Because the logical display is 255
columns wide and 255 rows long, your map or map set may overrun the
physical screen boundaries. By using the last parameters of the
CONVERSE statement, you can specify whether window mode will be
activated and where the physical display will be located on the map set:

()[] ()[]CONVERSE ,

WAIT
SET
UPDATE
RELEASE

 WINDOW ,
DISPLAY

screen - name row1 col1 row2 col2
�

�

�
�
�

�

�

�
�
�

�

�
�

�

�
�

CONVERSE screen-name WINDOW(row,col) enables window mode
when the map is displayed, with the upper left corner of the window
positioned at the specified row and column. This is known as program-
initiated window mode. A window mode message, listing PF key settings,
is displayed on the message line of the screen if no other message is
displayed (e.g., an error message). The row and column coordinates of
the upper left corner of the screen are displayed above the key simulation
field. Sample displays are shown below. Note the fully displayed input
fields on MAP1 are protected with the SET option and active with the
UPDATE option.

X X X
X X X
X X X
X X X

X X X
MAP1

X X X
Y Y Y
Y Y Y
Y Y Y
Y Y Y

Y Y Y
Y Y Y
Y Y Y
Y Y Y

MAP2

CONVERSE MAP1 WAIT

Current Window

X X X

CONVERSE MAP2(10,45)SET WINDOW
CONVERSE MAP2(10,45)UPDATE WINDOW

001 001

CONVERSE MAP2(10,45)UPDATE WINDOW

Appendix E Enhanced screen and program design

570 P39-5002-00

CONVERSE screen-name DISPLAY(row,col) allows you to position the
physical screen at the supplied location without initiating window mode.
However, user-initiated window mode can be activated by entering
WINDOW (W) in the key simulation field of the conversed screen.
Automatic windowing mode can be activated by entering AW in the key
simulation field of the conversed screen. If you use AW mode and press
PF12, the display is scrolled so that the cursor position is moved to
position 1,1. Using this option, you do not have to get into, and back out
of, windowing mode to move the display when the defined screen is
larger that the physical display of your terminal.

210 CONVERSE MAP1(60,1)WAIT

1,1

5,20

10,30

MAP1

MAP2

The characters AW may be changed to other characters by your System
Administrator.

Windowing

MANTIS Language 571

Window mode
In window mode, each time you press ENTER or a PF key, any valid
updated fields on the screen are updated in the corresponding program
variables. A CLEAR, PA1, or PA2 key affects only the fields entered on
the last terminal I/O. Out of window mode, variables are not updated by
a PA or CLEAR key.

The CANCEL key is defined by the Master User. When the CANCEL key
is set to PA1, PA2, PA3, or CLEAR, and one of these keys is pressed, no
data is moved from the screen’s input fields. When the CANCEL key is
set to something other than PA1, PA2, PA3, or CLEAR and a PF key or
ENTER is pressed, data is moved to the screen’s input fields (even if that
key is designated as CANCEL).

All windowing occurs while the MANTIS program executes a single
CONVERSE statement. You can reposition the physical screen by:

♦ Overtyping row and column values with new values and pressing
ENTER. (e.g., enter 20 40 to scroll to row 20, column 40).

♦ Overtyping the row and column values with displacement values (+ or
- in the first character position and the displacement value in the
following character positions). For example, enter +10 -20 to scroll
down 10 rows and left 20 columns.

In window mode, all PF keys are controlled by MANTIS and are not
passed to the application. These settings are documented in MANTIS
Facilities, OS/390, VSE/ESA, P39-5001. You can modify window mode
PF key scrolling amounts within your program by using the SCROLL
statement (e.g., SCROLL 30,30). The terminal operator can alter PF key
scrolling amounts in window mode by overtyping the row and column
values with incremental values (i in the first position and the incremental
value in the following position). For example, enter i20 i80 to scroll down
20 rows (PF8) or up 20 rows (PF7) and right 80 columns (PF11) or left 80
columns (PF10).

Appendix E Enhanced screen and program design

572 P39-5002-00

The application program can initiate window mode (using the WINDOW
option on the CONVERSE statement), but cannot restrict the positioning
of the window by the operator. Therefore, the operator can override the
PF key scroll settings specified in the program. The program can choose
meaningful SCROLL increments for the initial scroll values.

The application program can also use the DISPLAY (row, column)
parameters to position the physical screen somewhere other than row 1,
column 1 (upper left corner) of the logical display. DISPLAY does not
initiate window mode, but the user may initiate window mode on the
displayed map by entering WINDOW (W) in the lower right corner of the
screen.

Note that input fields can be updated in window mode. In window mode,
updated fields must fulfill extended edit requirements, if any, and are
updated in the MANTIS program’s variables when a scrolling PF key is
pressed.

Windowing

MANTIS Language 573

Terminating window mode
Pressing PF6/18 or PA2 terminates window mode and returns control to
the application program. Pressing PF6/18 causes MANTIS to return
“ENTER” in KEY and screen variable name. In window mode, entering a
value in the key simulation field and pressing PF6/18 returns control to
your program and updates the screen variable name in your program.
PA2 returns “CANCEL” to KEY and screen variable name. (PA2 is the
default for CANCEL, but the Master User may assign another setting for
CANCEL.)

The PF9/21 setting terminates window mode without returning control to
the application program, thereby making window-mode PF key settings
inactive. If you press a PF key when not in window mode, control returns
to the application program, and the program receives the pressed key
designation in KEY and screen variable name. The following figure
shows the effects of terminating window mode using various keys:

ENTRY PROG1
SCREEN MAP1("ONE")
SCREEN MAP2("TWO")

CONVERSE MAP2(1,20)WAIT
CONVERSE MAP1 WAIT

CONVERSE MAP3(20,1)SET
DO PROG2(MAP2,MAP3)

SCREEN MAP3("THREE")

ENTRY PROG2(MAP2,MAP3)
SCREEN MAP4("FOUR")
CONVERSE MAP2(1,20)WAIT
CONVERSE MAP3(20,1)WAIT
CONVERSE MAP4(20,20)SET
EXIT

(re-enter PROG1
at statement
after DO)

MAP1 MAP2

MAP3

MAP1 MAP2

MAP3 MAP1

DO
PROG2

EXIT
PROG2

To restrict the user from entering window mode and scrolling around a
screen, you can specify the Full Display attribute or Protect Bottom Line
attribute on the Library Functions option. The user is then unable to enter
data in the key simulation field.

Appendix E Enhanced screen and program design

574 P39-5002-00

Clearing a map
A conversed map remains in the map set until one of the following
conditions occurs:

♦ The map set is cleared with a CLEAR statement.

♦ The map set is reset by a CONVERSE statement without a WAIT,
SET, or UPDATE option.

♦ The map is removed with a CONVERSE map RELEASE.

♦ An external routine is exited where a map defined at that level is in
the map set. See example 2 in “Clearing a map set” on page 575.

A CLEAR statement without a map name clears all conversed maps from
the map set and sets the KEY function to CLEAR. CLEAR with a map
name clears data from the data fields of the named map and sets the key
value of the named map to null. It does not remove the named map from
your map set.

CLEAR or CONVERSE (without a WAIT, SET, or UPDATE) clears the
logical display of all existing maps. If you do not want to keep track of the
first map set building CONVERSE statement, use a CLEAR statement
prior to any CONVERSE. For example:
100 WHILE KEY<>"CANCEL"
110 .CLEAR

120 .WHEN NAME="Y"

130 ..CONVERSE MAP_NAME WAIT

140 .WHEN OPTION="Y"

150 ..CONVERSE MAP_OPTION WAIT

160 .WHEN REFERENCE="Y"

170 ..CONVERSE MAP_REFERENCE WAIT

180 .END

190 .CONVERSE MAP_SELECT SET

200 END

The CONVERSE statements (lines 130, 150, and 170) require no
considerations if they are the first statements executed. CLEAR (line
110) clears any previous map set so these conversed maps do not
overlay an existing map. The CONVERSE statement in line 190 sends
the map to the logical display.

Clearing a map

MANTIS Language 575

Clearing a map set
A map set built within your program remains in the logical display until
you CLEAR it. A map defined in an externally done program and not
cleared before returning to the originating program causes the entire map
set to be cleared. The following examples show how this rule works.

The examples also show how map names are passed to the external
program by naming them as arguments of the DO statement in the
originating program and as parameters of the ENTRY statement of the
external program. The DO statement in PROG1 passes MAP2 and
MAP3 as arguments to PROG2. PROG2 also uses MAP4, which is not
defined in PROG1.

In Example 1, MAP4 is not cleared before exiting PROG2. Because
MAP4 remains in the map set and is not defined in PROG1, the entire
map set is cleared when returning to PROG1.

//Example 1

ENTRY PROG1
SCREEN MAP1("ONE")
SCREEN MAP2("TWO")

CONVERSE MAP2(1,20)WAIT
CONVERSE MAP1 WAIT

CONVERSE MAP3(20,1)SET
DO PROG2(MAP2,MAP3)

SCREEN MAP3("THREE")

ENTRY PROG2(MAP2,MAP3)
SCREEN MAP4("FOUR")
CONVERSE MAP2(1,20)WAIT
CONVERSE MAP3(20,1)WAIT
CONVERSE MAP4(20,20)SET
EXIT

(re-enter PROG1
at statement
after DO)

MAP1 MAP2

MAP3

EXIT
PROG2

DO
PROG2

MAP1 MAP2

MAP3 MAP4

Appendix E Enhanced screen and program design

576 P39-5002-00

In Example 2, PROG2 converses MAP4 and then clears it from the map
set. Therefore, the map set, which now contains only maps already
defined in PROG1, remains when returning to PROG1.

Example 2
ENTRY PROG1 ENTRY PROG2(MAP2,MAP3) (reenter
SCREEN MAP1("ONE") SCREEN MAP4("FOUR") prog1 at
SCREEN MAP2("TWO") CONVERSE MAP2(1,20) WAIT statement
SCREEN MAP3("THREE") CONVERSE MAP3(20,1) WAIT after DO)
CONVERSE MAP1 WAIT CONVERSE MAP4(20,20) SET

CONVERSE MAP2(1,20) WAIT CLEAR

CONVERSE MAP3(20,1) SET CONVERSE MAP2(1,20) WAIT

DO PROG2(MAP2,MAP3) CONVERSE MAP3(20,1) SET

EXIT

MAP1 MAP2

MAP3

MAP1 MAP2

MAP3

DO
PROG2

EXIT
PROG2

MAP2

MAP3

MAP2

MAP3MAP4

CLEAR

Clearing a map

MANTIS Language 577

In example 3, the statement, CONVERSE MAP4 RELEASE, at the end of
the program returns the map set to its original position.

Example 3
ENTRY PROG1 ENTRY PROG2(MAP2,MAP3) (reenter PROG1
SCREEN MAP1("ONE") SCREEN MAP4("FOUR") at statement
SCREEN MAP2("TWO") CONVERSE MAP2(1,20)WAIT after DO)
SCREEN MAP3("THREE") CONVERSE MAP3(20,1)WAIT

CONVERSE MAP1 WAIT CONVERSE MAP4(20,20)SET

CONVERSE MAP2(1,20)WAIT CONVERSE MAP4 RELEASE

CONVERSE MAP3(20,1)SET EXIT

DO PROG2(MAP2,MAP3)

PROG2
DO

EXIT
PROG2

CONV.
MAP4
REL

MAP1 MAP2

MAP3

MAP1 MAP2

MAP3 MAP4

MAP1 MAP2

MAP3

MAP1 MAP2

MAP3

Appendix E Enhanced screen and program design

578 P39-5002-00

Advanced editing
MANTIS can perform certain data editing checks (e.g., numeric field
masks and range checks). Numeric field masks provide the following
formatting capabilities:

♦ Float character

♦ Fill character(s)

♦ Floating + or - sign

♦ Trailing CR/DB/DR sign

♦ Zero filling

MANTIS performs extended editing and numeric field mask editing
before returning control to the application program. MANTIS highlights
any fields in error and displays a message for the first error. If MANTIS
detects an error outside the physical screen (e.g., not currently displayed
on the screen), MANTIS will automatically initiate window mode and will
ask the user to locate and correct the field in error.

For more information on data editing, refer to MANTIS Facilities, OS/390,
VSE/ESA, P39-5001.

MANTIS Language 579

F
Mixed-data support

Mixed-data is a data stream composed of any combination of SBCS
(Single Byte Character Set), such as EBCDIC and DBCS (Double Byte
Character Set). DBCS characters require 2-bytes (16 bits) to represent
the character, as opposed to 1-byte (8 bits) for an SBCS character.
DBCS characters are used to represent ideographic characters such as
those in Kanji, Korean, or Chinese. You must set MIXMODE ON in order
to have your program use mixed strings in TEXT variables. You should
have MIXMODE OFF if you don’t need it, both for efficiency's sake and
for proper text operations when working with arbitrary binary values in
TEXT variables (for example, MARK variables, Total refer, and CHR
function).

The following conventions are used throughout this appendix to describe
DBCS strings.

DBCS characters in TEXT type are separated from SBCS (Single Byte
Character Set) characters by shift codes. In the following examples, a
Shift-out of EBCDIC is noted by the < symbol, and a Shift-in to EBCDIC is
noted by the > symbol, as shown below.
A="abc< 1 2 >de< 3 >fg"

In this example, the letters a, b, c, d, e, f, and g represent EBCDIC
characters. The bold numerals represent DBCS strings.

In memory, SO and SI each occupy a single byte. On a terminal, they
are normally displayed as a blank. The values for SO/SI codes are
hardware dependent.

Mixed-data supported MANTIS runs on IBM55xx series terminals or other
DBCS supported IBM55xx compatible terminals. Mixed-data is
supported on all TP Monitors in the CICS and IMS environments.

Appendix F Mixed-data support

580 P39-5002-00

Using mixed-data in your program
Mixed-data is allowed in a MANTIS text variable or G-type (G“…”) literal.
For example:
00010 TEXT ADDR(60)

00020 ADDR=G"< 1 2 3 4 5 >2-4-5 MORI< 6 7 >"

Shift codes are required only when a TEXT variable or a G-type literal
(G“…”) contains some DBCS characters. A KANJI variable, DBCS
variable, or K-type literal (K“…”) contains only DBCS characters, so no
shift code is required.

A DBCS substring must contain an even number of bytes. The SO/SI
must be balanced in a field when they are displayed. When mixed-data
is entered from a terminal, MANTIS automatically balances the SO/SI
pairs in the data stream. Zero length is valid for DBCS substring. For
example:
00020 ADDR="AB<>CD"

where <> is called an empty DBCS. Shift-out (<) and Shift-in (>) are
usually invisible when displayed or printed.

Using mixed-data in screen design

MANTIS Language 581

Using mixed-data in screen design
Mixed-data support has been added to Screen Design in the form of the
SO/SI attribute. This attribute is only valid with the text datatype. You
can create SO/SI pairs for all screen design fields which possess the
attribute.

The following screen illustration shows where the SO/SI attribute can be
specified. As with many attributes, SO/SI can also be affected by the
ATTRIBUTE statement. (See “ATTRIBUTE (Statement)” on page 102
for more information on this statement.)

B|U|R|R|Y'S
CUSTOMER|REPORT

CUSTOMER||||||||CUSTOMER||||||||BRANCH|||||||CREDIT|||||||CREDIT
NUMBER|||||||||||NAME||||||||||NUMBER|||||||RATING|||||||LIMIT

$#####

* *
* FIELD NAME : cust number : LENGTH : 6 : *
* ROW/COLUMN : 7 3 : *
* DATATYPE :TXT : INTENSITY :NOR : CURSOR : N : *
* PROTECTED : N : AUTO SKIP : Y : UPPERCASE : N : *
* BLINKING : N : REVERSE VIDEO : N : HIGHLIGHT : N : *
* COLOR : NO: MODIFIED TAG : N : DETECTABLE : N : *
* BOX : L. N U. N O. N R. N : SO/SI : N : *
* REPEATS : V. 14 1 H. EXTENDED EDIT : N : *

*

OVERTYPE ATTRIBUTE SETTINGS AND HIT ENTER

Appendix F Mixed-data support

582 P39-5002-00

Heading fields
As the example below shows, you can use mixed-data and DBCS in
screen design to specify mixed-data heading fields.

BURRY's
<%1%2%3>|REPORT

Customer|||||Customer||||<%1%2%3>|||<%1%2%3%4>|Credit
<%1%2>||||||||<%%%%>|||<%1%2%3%4>|Rating||||||Limit
$#####

Using mixed-data in screen design

MANTIS Language 583

Screen design output and input and SO/SI pairs
MANTIS maintains integrity of the SO/SI pair in TEXT variables by
automatically adding a SO or SI to complete a pair where one member
may have been dropped. A SO or SI could be dropped by substringing,
assignment to a shorter field, or truncation due to CONVERSE overlay or
windowing.

When the field is partially displayed, SO and/or SI are added by MANTIS
for display purposes. After a CONVERSE, MANTIS automatically
merges the input with the undisplayed parts of the string. The examples
below illustrate this process.

Examples. In the following examples, the strings are partially displayed
at the right edge of the terminal window, so that the left side of the string
can be truncated.

1. AB< 1 2 >C <=== text variable input

 AB< 1 > <=== input partially displayed at CONVERSE

 AB< 4 > <=== user changes 1 to 4

AB< 4 2 3 >C <=== text variable after CONVERSE

2. AB< 1 2 3 >C <=== text variable input

 AB< 1 > <=== input partially displayed at CONVERSE

 A< 1 >B <=== user added B after 1

A< 1 >B< 3 >C <=== text variable after CONVERSE

Appendix F Mixed-data support

584 P39-5002-00

In the following examples, the strings are partially displayed at the left
edge of the terminal window, so that the right side of the string can be
truncated.

3. AB< 1 2 3 >C <=== text variable input

< 2 3 >C <=== input partially displayed at CONVERSE

 C< 2 3 > <=== user changed

 A<>C< 2 3 > <=== text variable after CONVERSE

If your terminal is a non-DBCS terminal, MANTIS displays DBCS screen
fields as “%%%%% ...” with the protected attribute.

For example: A= G"a b c < 1 2 > d e < 3 < f g "

Displays as: A= G"a b c % % % % % % d e % % % % f g " on a non-DBCS
terminal.

Mixed-data expressions

MANTIS Language 585

Mixed-data expressions
In using mixed-data expressions, note the following rules as described
below:

♦ Expressions are rounded down to the even number of bytes in the
DBCS substring.

♦ MANTIS maintains balanced SO/SI throughout truncation.

♦ Leading and trailing null DBCS(SO/SI) are removed in assignment
and concatenation.

♦ POINT function and substring refer to character positions not byte
positions.

MIXMODE statement
This statement can be set to OFF or ON and controls the handling of
mixed-data. MIXMODE ON sets the program in mixed-data mode.
MIXMODE OFF sets the program in non-mixed-data mode. Optimum
efficiency is obtained with MIXMODE OFF when the program does not
handle mixed-data. Do not specify MIXMODE ON unless you are using
text expressions containing shift codes. For more information, see
“MIXMODE” on page 329.

Literals and variables
MANTIS stores mixed-data as either literals or TEXT variables.
00020 TEXT A(80),B(80)

00030 A=G"abc< 1 2 >de< 3 >fg"

The SO/SI bytes occupy one character position (byte) each. Therefore,
you must consider the defined length as specified in the TEXT statement.
TEXT variables need one byte for each SO and SI, one byte for each
SBCS character, and two bytes for each DBCS character. For example:
00010 MIXMODE ON

00020 TEXT ALPHA(3)

00030 ALPHA=G"< 1 >" <=== The variable ALPHA will contain the
 null value with current length of zero.

Appendix F Mixed-data support

586 P39-5002-00

SO/SI take one position each leaving 1-byte (an odd number of bytes).
MANTIS truncates the odd byte and leaves 0 bytes for DBCS data. In
this example, ALPHA must be at least four characters to hold the data in
statement 30. Any TEXT field must be at least four characters long to
hold any non-null DBCS characters.

MANTIS keeps SO/SI pairs balanced in truncation. For example:
00010 MIXMODE ON

00020 TEXT BETA(7)

00030 BETA=G"< 1 2 3 4 >" <=== The variable BETA will
 contain < 1 2> with
 current length of six bytes (two
 characters).

MANTIS removes the empty SO/SI pairs on both sides. For example:
00010 MIXMODE ON

00020 TEXT GAMMA(20)

00030 GAMMA=G"<><>< 1 ><>< 2 ><>" <=== The variable GAMMA
 will contain 1><>< 2>
 and current length of ten
 bytes (two characters).

Concatenation
You can concatenate two text or mixed-data variables or literals by using
the plus (+) operator. For example:
00010 MIXMODE ON

00020 TEXT ONE(12),TWO(12),THREE(24)

00030 ONE=G"< 1 2 >"

00040 TWO=G"< 3 >AB"

00050 THREE=ONE+TWO

THREE will contain < 1 2 3 >AB.

The unnecessary null text (><) is removed.

Mixed-data expressions

MANTIS Language 587

Deconcatenation
You can deconcatenate or remove a portion of a mixed-data variable
using the minus (-) operator. For example:
00010 MIXMODE ON

00020 TEXT ONE(24),TWO(24),THREE(24),FOUR(24)

00030 ONE=G"< 1 2 3 >AB< 4>"

00040 TWO=ONE-G"< 2 >"

00050 THREE=ONE-G"AB"

00060 FOUR=ONE-G< 3 >A"

00070 X=POINT(ONE-G"< 2 >")

00080 Y=POINT(ONE-G"AB")

00090 Z=POINT(ONE-G"< 3 >A")

TWO will contain < 1 3 >AB< 4 > X will contain 2
THREE will contain < 1 2 3 4 > Y will contain 4
FOUR will contain < 1 2 >B< 4 > Z will contain 3

Appendix F Mixed-data support

588 P39-5002-00

Subscripts
You can use subscripts to reference substrings of a mixed-data variable.
The following example illustrates how this process works:
00010 MIXMODE ON

00020 TEXT MSG(50)

00030 MSG=G"ABC< 1 2 3 >DE< 4 5 >"

The subscripts below show how you can reference substrings of the
variable listed above. When specifying character positions for mixed-
data variables, MANTIS does not count shift codes. The subscripts refer
to CHARACTER positions, not BYTE positions.

Example Results Comments
MSG "ABC< 1 2 3 >DE< 4 5 >" SIZE(MSG) = 10

(character count).
MSG(9) "< 4 5 >"
MSG(5,5) "< 2 >"
MSG(6,8) "< 3 >DE"
MSG(11) "" Beyond end of

current length.
MSG(-1) "< 5 >" Last character.
MSG(-5,-4) "< 3 >D"

Mixed-data expressions

MANTIS Language 589

Literals and mixed-data expressions
MANTIS provides a Mixed Text literal, G", to support Shift-in and Shift-out
strings. The following example shows how to use this literal:
00010 KANJI ALPHA

00020 ALPHA=G"< 1 2 3 >"

When you assign the Mixed Text literal to a KANJI or DBCS variable,
MANTIS removes the SO/SI on both sides. You can specify a mixed
literal more quickly using the Mixed Text literal than by using a Kanji
literal (K“ ”). To illustrate this, instructions are provided below for using
a Kanji literal and a Mixed Text literal:

♦ Kanji literal. You must enter K“ ” and then press ENTER.

The terminal will make the quoted string into a DBCS field, and you
can then enter the DBCS characters.

♦ Mixed Text literal. You can use the keyboard to shift modes without
an additional I/O. Use G" to assign values to either TEXT (mixed) or
DBCS fields.

Appendix F Mixed-data support

590 P39-5002-00

Built-in functions
Several of the MANTIS functions are affected by mixed-data support, and
there are some new functions that help provide this support. The syntax
and function of these built-ins are described throughout this section. For
more information, see the individual functions in “MANTIS programming
language” on page 75.

SIZE
SIZE(t,"BYTelength")

“BYT” returns the current bytelength of the specified string variable
(including shift codes). If a second parameter on SIZE is not specified,
the current number of characters is returned. If name is not a TEXT
variable, then a program fault occurs.
00010 MIXMODE ON

00020 TEXT ALPHA(20),BETA(20)

00030 KANJI GAMMA(20)

00040 ALPHA=G"< 1 2 >A"

00050 BETA=G"A<>B"

00060 GAMMA=G"< 1 2 >"

00070 A=SIZE(ALPHA,"BYT")

00080 B=SIZE(BETA,"BYT")

00090 C=SIZE(GAMMA,"BYT")

A, B, and C have values 7, 4, and 6.

Built-in functions

MANTIS Language 591

If a second parameter is not specified, the current number of characters
is returned. In the previous example, if you change the values to:
00070 A=SIZE(ALPHA)

00080 B=SIZE(BETA)

00090 C=SIZE(GAMMA)

A, B, and C have values of 3, 2, 2.

You cannot specify arrays as name.
00070 A=SIZE(ALPHA(5),"BYT")

The result (A) is unpredictable.

SIZE(name, “BYT”) and TEXT name(n) are the two instances where the
number of bytes is considered, not the number of characters.

POINT
POINT(t1 +- t2)

When calculating the positions for a mixed-data variable, MANTIS uses
character positions and does not count shift codes.
00010 MIXMODE ON

00020 TEXT ALPHA(20),BETA(20)

00030 ALPHA=G"< 1 2 3 >"

00040 BETA=G"AB< 1 2 >C"

00050 A=POINT(ALPHA-G"< 2 >")

00060 B=POINT(BETA-"C")

A and B will have the values 2 and 5.

MIXM
MIXM(name)

MIXM converts a DBCS field to a mixed text field as shown below:
00010 MIXMODE ON

00020 TEXT ALPHA(20)

00030 DBCS GAMMA(20)

00040 GAMMA=K" 1 2 "

00050 ALPHA=MIXM(GAMMA)

ALPHA contains G“< 1 2 >”.

Appendix F Mixed-data support

592 P39-5002-00

MIXD
MIXD(t)

MIXD extracts the DBCS data from mixed-data as shown below:
00010 MIXMODE ON

00020 TEXT ALPHA(20)

00030 KANJI GAMMA(20)

00040 ALPHA="A< 1 >BC< 2 >"

00050 GAMMA=MIXD(ALPHA)

GAMMA contains K“1 2”.

MIXT
MIXT(t)

MIXT extracts the SBCS text data from mixed-data as shown below:
00010 MIXMODE ON

00020 TEXT ALPHA(20),BETA(20)

00030 ALPHA="A< 1>BC< 2 >"

00040 BETA=MIXT(ALPHA)

BETA contains “ABC”.

Statements and commands

MANTIS Language 593

Statements and commands
Several statements and commands are affected by mixed-data support.
This section explains the modified functionality. For more information
about individual statements or commands, see “MANTIS programming
language” on page 75.

LET
If truncation occurs, SO/SI pairs are automatically balanced in mixed-
data variables as shown below:
00010 MIXMODE ON

00020 TEXT ALPHA(6), BETA(8)

00030 ALPHA=G"ABC< 1 >"

00040 BETA=G"ABC< 1 2 >"

The variable ALPHA will contain ABC because there is not room for
DBCS data and shift codes. The variable BETA will contain “ABC< 1 >”
because the DBCS is truncated to an even number of bytes and a trailing
SI is added.

MANTIS only checks for SO/SI when MIXMODE is ON. Otherwise
truncation occurs and substringing will NOT maintain SO/SI balancing.
However, if MIXMODE OFF is specified as shown below, the variable
ALPHA now contains “ABC< 1” and BETA contains “ABC< 1 ”. These
variables may result in an abend when they are displayed.
00010 MIXMODE OFF

00020 TEXT ALPHA(6), BETA(7)

00030 ALPHA=G"ABC< 1 >"

00040 BETA=G"ABC< 1 2 >"

When subscripts are specified, MANTIS places the SO/SI pairs in the
proper location as shown below:
00010 MIXMODE ON

00020 TEXT ALPHA(15),BETA(15),GAMMA(14)

00030 ALPHA=G"A< 1 2 >BCDE< 3 >"

00040 BETA=ALPHA

00050 GAMMA=ALPHA

00060 BETA(6,6)=G"< 4 >"

00070 GAMMA(4,6)=G"< 4 >"

BETA will contain A< 1 2 >BC< 4 >E and GAMMA will contain A< 1 2 4-
--->E,

where - represents a 1-byte blank.

Appendix F Mixed-data support

594 P39-5002-00

In the previous example, if you changed the following values:
00060 BETA(3,4)=""

00070 GAMMA(6,8)=""

the resulting variable BETA would contain A< 1---->CDE, and GAMMA
would contain

A< 1 2 >BC---, where - represents a 1-byte blank.

SHOW
If the mixed-data is extended to the next display line, SO/SI must be
paired for each line of the display as shown below:
00010 MIXMODE ON

00020 TEXT ALPHA(75)

00030 PAD ALPHA"A"

00040 SHOW A+G"< 1 2 >"

The resulting lines would occur:
AAAAAAAAAAAAAAAAAAAAAAA12

Statements and commands

MANTIS Language 595

ATTRIBUTE
ATTRIBUTE(map,field)={"MIX"|"NOMIX"}

You can modify the SO/SI screen design field attribute.

Field attribute Description
“map” Screen name.
“name” Screen field name.
“MIX” Enables you to enter DBCS in affected fields.
“NOMIX” Disables DBCS entry.

If the field name is omitted, all text fields are affected.

The changed attributes will remain in effect until you change them again.
The attribute(map,field)=RESET will not reset a “MIX” or “NOMIX”
specification. The last set value remains when a RESET is issued. For
example:
00070 ATTRIBUTE(MAP,F1)="MIX"

00080 ATTRIBUTE(MAP)="RESET"

00090 CONVERSE MAP <=== Field F1 has MIX attribute
00100 ATTRIBUTE(MAP,F1)="NOMIX"

00110 ATTRIBUTE(MAP)="RESET"

00120 CONVERSE MAP <=== Field F1 has NOMIX attribute

PAD
You can use mixed-data which represents the pad character (SBCS or
DBCS) as shown below:
00010 MIXMODE ON

00020 TEXT ALPHA(10)

00030 PAD ALPHA G"< 1 >"

ALPHA will contain < 1 1 1 1 >.
00010 MIXMODE ON

00020 TEXT BETA(10)

00030 BETA="ABCDEF"

00040 PAD BETA(3,5) G"< 1 >"

BETA will contain AB< 1 1 1 >.

Appendix F Mixed-data support

596 P39-5002-00

UNPAD
You can use mixed-data which represents the unpad character (SBCS or
DBCS) as shown below:
00010 MIXMODE ON

00020 TEXT ALPHA (10)

00030 ALPHA=G"ABC< 1 1 >"

00040 UNPAD ALPHA G"< 1 >"

ALPHA will contain ABC.
00010 MIXMODE ON

00020 TEXT BETA(10)

00030 BETA=G"AB< 1 1 >C"

00040 UNPAD BETA(3,4) G"< 1 >"

BETA will contain ABC.

MANTIS Language 597

Glossary of terms

| (vertical bar)
Default blank fill character used in Screen Design. Because MANTIS
interprets a blank space as a new field, the blank fill character is used to
connect words or letters in heading fields. Using the blank fill character
optimizes transmission and screen storage.

The vertical bar character is also used as the first character of a
comment.

* (asterisk)
Entered on parameter entry panels and on the command line as a
wildcard character to represent an indefinite number of characters in a
generic pattern of program names (e.g., CUST*). In addition, the asterisk
is also supplied by the Compose action in the COMPONENT statements
and CEND statements for composed programs, for example,
|*COMPONENT and |*CEND.

@ (at sign)
The at sign is the default character that you append to a source program
name to differentiate it from a composed program name or a component
name. When the at sign is appended to a source program name, the
Compose action assembles and replaces a composed program with the
same name as the source name without the at sign. For example, if your
source program is CUST_BROWSE@, and you issue the Compose
action on the source program, the resulting composed program name is
CUST_BROWSE. Note that your Master User may change the
differentiator character to a different character for your environment. In
addition, the at sign is also coded in the SOURCE statement of an
executable program (|@SOURCE) to nominate MANTIS source code
changes. Coding a COMPONENT statement with the at sign
(|@COMPONENT) nominates that component for the Decompose action.

Glossary of terms

598 P39-5002-00

attribute
Specific characteristic(s) assigned to the fields in a screen during a
screen design session. For example; field name, field length, vertical and
horizontal repeats, color, highlight, protected, unprotected. Most field
attributes can also be set in programming mode using the ATTRIBUTE
statement.

background task
A CICS MANTIS task running which is not attached to a terminal device.

BIG
A data type occupying a double-precision floating point variable.

bind
An action that creates an HPO-bound version of a MANTIS program.

CEF
See Component Engineering Facility.

CEND statement
The statement that CEF generates to mark the end of individual
component code in a composed program. CEND (component end)
statements are generated only if the COMPONENT statements in the
composed program are commented by specifying COMMENTS=YES
(parameter in the CSIOPTNS statement) or by setting the Function
Option “Component stmt?” to Y (yes) on the COMPOSE Program Entry
panel.

chain
A generic data structure which has a beginning and an end, is normally
searched sequentially, and elements can be inserted or deleted at any
point. For example, a program chain.

CHAIN is also a program statement that transfers control to another
program.

Glossary of terms

MANTIS Language 599

comments
Mantis program lines or ends of lines containing comment information
that is not executed as part of the program.

A comment is also a keyword parameter in the CSIOPTNS statement for
a source program. The format is COMMENTS=YES or
COMMENTS=NO. If YES, the COMMENTS parameter comments the
COMPONENT statements in a composed program and generates a
|*CEND statement to mark the end of individual component code. If NO,
components in the composed program are framed by their first and last
statements only.

COMMIT points
Point at the end of a Logical Unit of Work (LUW) (sometimes called a
synchronization point) where MANTIS automatically generates a
COMMIT if it encounters any uncommitted updates. COMMIT points can
also be specified by the user.

complex variable
A variable that contains and defines other variables, for example, FILE,
ACCESS, TOTAL, VIEW, INTERFACE, or SCREEN variables.

component
A MANTIS subroutine that is common to more than one program.
Components can be used and reused as necessary as building blocks of
code throughout an application. Components can be framed by ENTRY
and EXIT statements (although this is not required), and they are stored
in a library like other MANTIS programs. Components are identified in
source programs by the COMPONENT statement. When the Compose
action is issued on the source program, the COMPONENT statement is
expanded into component code in the resulting composed program.

Component Engineering Facility (CEF)
The MANTIS facility that allows you to include reusable components as
the building blocks in a structured and modular design. In CEF, source
programs and their components are assembled into composed programs
that can be edited and executed. In addition, executable programs can
be decomposed into source code and component code. CEF uses the
actions of CEF Check, Compose, Decompose, CREF (Cross Reference),
and the Bill of Materials List.

Glossary of terms

600 P39-5002-00

compose
An action that assembles a MANTIS source program and its
COMPONENT statement(s) into a composed program with expanded
component code.

composed program
A MANTIS program containing source code and component code that is
the result of issuing the Compose action on a source program.
Composed programs are executable programs that can be edited and
executed. Composed programs also have a source program version of
MANTIS source code and COMPONENT statements on which the
Compose action was issued. See executable program and source
program.

data area
Part of a MANTIS program where definitions and values of symbolic
names are kept. Each variable has its own associated data area within
the larger memory allocation. Also known as the Data Work Area
(DWA). See “DWA” on page 601.

data block
An entry in the DWA that completely defines a variable or complex
variable. It consists of a DATA HEADER followed by 0-n DATA
ELEMENTS.

data element
A single variable within a DATA BLOCK, for example, a single
SMALL/BIG/TEXT/KANJI entry.

data position characters
Type of edit characters used in an edit mask to specify that the mask
should be zero-filled. For example, to designate a field to enter social
security numbers, you would specify Z##-###-####. When the data
012345678 is entered the field will display as 012-34-5678.

Glossary of terms

MANTIS Language 601

decompose
An action that disassembles an executable MANTIS program into
individual components and then updates program libraries with source
changes and component changes.

DOLEVEL
An indication of how many levels of external DOs a program is running
under. The first program executed by a CHAIN has a DOLEVEL of zero.
Also a built-in function indicating the same.

domain
The space in, or the invisible boundary around, a defined screen or field.
Domains ensure that the screen and field definitions (including attributes
and repeat specifications) made during screen design are retained until
they are modified.

DOSTACK
A context block used when external DOs are activated. Information
relative to the executing program (from TWA) is pushed and popped from
this stack as programs are externally executed and exited.

double byte character set (DBCS)
Two-byte characters used on Asian language support terminals.

DWA
“Data Work Area. A context block containing the data values and
definition of MANTIS variables for a program.

edit characters
Special characters used to allow flexible formatting of numeric data fields.
Edit characters display only when data is entered in a numeric field. For
example, to display a field with a dollar amount, use the dollar sign as an
edit character. When numbers are entered in the field, the edit character
will display; otherwise it remains hidden.

Glossary of terms

602 P39-5002-00

edit masks
Special characters that allow you to format numeric fields to display data
in a certain way. Edit masks are mainly used for formatting output fields.
For example, to display a list of check amounts in a column, use an edit
mask that displays the amounts in the correct, right-justified format.

entity (or MANTIS entity)
Generic name for complex variable descriptions (SCREEN, INTERFACE,
FILE), MANTIS programs, and MANTIS internal file data.

executable program
Any program that can be executed in MANTIS. An executable program
that is the result of the Compose action, is called a composed program.
See composed program and source program.

extended attribute support
Support in Screen Design for advanced attributes available on the 3270
style terminal. This includes color, blinking, underlining, reverse video,
and so on.

external file view
Detailed information about the contents and format stored in an external
file, such as a VSAM file. A file view allows you to control access to the
information by password protecting certain portions of the file data.
Defined by the ACCESS statement.

field attribute
Attribute such as color, highlighting, blinking, underlining, and so on
defined to a field on a screen.

file view
See “internal file view” on page 605, “external file view” on page 602, or
“TOTAL file view” on page 613.

Glossary of terms

MANTIS Language 603

fill characters
Any edit mask character (other than a blank and #) that occurs in
consecutive positions in a mask, but does not begin in the first position.
Fill characters can be used to display columns of numeric information in a
particular way, such as a list of check amounts that needs to be right
justified.

fixed position characters
Any edit mask character (other than # and the sign characters when used
as fill or floating characters) that does not occur in consecutive positions
in a mask. With a few exceptions, fixed position characters are always
displayed in a mask.

float characters
Any character (other than blank, #, +, and -) that occupies the first and at
least one consecutive position of the edit mask.

Full Screen Editor (FSE)
Provides facilities for creating and modifying MANTIS programs using the
logical screen support of the Logical Terminal Interface (LTI). FSE is
accessed through the Edit Option on the Program Design Facility menu.

function key
(1) The program function (PF) keys that issue a specific action. PF keys
are displayed at the bottom of panels and can be changed for the
duration of the current action. Your Master User can permanently
customize PF key settings for each user. Examples of PF keys are
F1=HELP, F2=EXHELP, F3=EXIT, and F4=PROMPT. (2)The program
function (PF) keys that issue a specific action. PF keys are available for
each facility and differ from screen to screen within the facility. Your
Master User can permanently customize PF key settings for each user.

Glossary of terms

604 P39-5002-00

function key area
The area at the bottom of your panel where function key numbers and
their settings are displayed.

header
The initial part of a simple or complex variable. For a simple variable, it
consists of the variable’s typing definition. For a complex variable, it
consists of typing definition, status variable value, and current context
(keys, marks, flags, etc.).

heading fields
Fields defined in Screen Design to specify screen and field names.
Heading fields always appear on the completed design exactly as they
were entered.

help
The common dialog action for field-specific help. When issued, HELP
displays a help panel that explains a specific field (based on cursor
position). HELP can also display a help panel for a command or
message, or HELP can display the KEYSTEMP panel where you may
alter PF keys.

horizontal repeats
Attribute in Screen Design to indicate the number of times a field on a
screen is to be repeated horizontally.

HPO bind
The function that creates a new bound version of a MANTIS program.

HPO unbind
The function that replaces the bound version of a MANTIS program with
the unbound version.

Glossary of terms

MANTIS Language 605

immediate mode statement
A statement entered without a line number in the Line Editor, or on the
command line of the Full Screen Editor, indicating it should be interpreted
and executed immediately, and not become a part of the program.

index
An area of the Variable Work Area (VWA) that maps user word numbers
to DWA offsets for the corresponding variables.

INTERFACE
A complex data type that defines an area used by a non-MANTIS
program when CALLed. Also used to refer to the program as the object
of a CALL statement.

interface area
A context block used to pass data between MANTIS and an interface
program.

internal file view
Same as MANTIS “file view” on page 602; that is, a file defined by a
MANTIS user and residing on the MANTIS cluster.

Kanji
A generic term indicating a 16-bit text data type, and specifically a
Japanese language 16-bit character set.

leveling
Use of the LEVEL option on definition or action statements for complex
variables. This indicates the simple variables are subscripted by an order
of the level specification on the definition statement. For example, FILE
REC(“MISC”,“PASSWORD”,“10”) indicates a dimension of 10 for all
simple variables defined in “MISC” file. GET REC LEVEL=8 indicates that
a successful GET fills the eighth element of each of these arrays.

Glossary of terms

606 P39-5002-00

line commands
FSE commands that affect the line(s) on which they are entered. Line
commands include editing commands (move, copy, etc.) as well as
destination commands (after, before, etc.).

line editor
The single-line program editing facility used in prior releases of MANTIS.
It is still available by running “CONTROL:LINE_EDIT”. Since the Line
Editor does not update the Entity Profile Records, programs should be
written using the Full Screen Editor.

logical terminal
An abstract device with 255 rows and 255 columns and a superset of all
terminal features. Screen I/O is directed to the logical terminal, and
subsets of dimensions and features are directed to the physical terminal
device, depending upon its actual capabilities.

logoff
A common dialog action that lets you exit from MANTIS. If you are
working in the Full Screen Editor when you issue LOGOFF, your changes
are saved.

LTI
Logical Terminal Interface. The facility which directs and controls input
and output to physical and logical terminal and printer devices.

map
Commonly used as a synonym for screen or panel.

map set
The collection of all screens displayed to the logical terminal at any one
time. A screen is added to the map set by a CONVERSE mapname SET
or CONVERSE mapname WAIT. A map set is cleared by CLEAR or
CONVERSE without SET or WAIT.

Glossary of terms

MANTIS Language 607

Master User
Person or persons designated to perform administrative functions for an
installation site. The Master User can set up user profiles, specify which
users can use which facility programs, alter sign-on and termination, set
printing specifications, establish system security, edit text of MANTIS and
Kanji messages, maintain files and codes, display program statistics,
check bound programs, transfer entities, capture data from a background
task, share frequently used programs among users, and run reports.

menu
A common dialog action that lets you return to the MANTIS Facility
Selection menu. If you are working in the Full Screen Editor when you
issue MENU, your changes are saved.

mixed-data type support
Support allowing both EBCDIC (for example, English) and DBCS (Asian
language) to reside concurrently in a variable to indicate whether
EBCDIC or DBCS characters are present. Set by the SO/SI attribute in
Screen Design and by the MIXMODE ON statement in programming
mode.

multiple buffering
See “leveling” on page 605.

nominate
Marking COMPONENT statements in an executable or composed
program by replacing the asterisk (*) with the at sign (@), for example,
|@COMPONENT. Nominating a component indicates to the Decompose
action that the component code was modified, and it is decomposed and
updated on your user library. If MANTIS source code changes, the
SOURCE statement in the executable program must be nominated for
the Decompose action to recognize source code changes, for example,
|@SOURCE. You may make changes to the source code without
changing any components.

Glossary of terms

608 P39-5002-00

nucleus
Procedures and modules of MANTIS that direct the execution of MANTIS
programs and are environment-independent.

numeric data
BIG and SMALL variables or expressions or function outputs.

numeric fields
Fields defined for the input and output of numeric data only.

opaque map
Attribute in the Screen Design Library Facility that allows a screen (map)
to be opaque (rather than transparent) when it is conversed. This
attribute can only be set from the Screen Design Library Facility menu.

panel
A grouping of information arranged in a particular design on a screen. For
example, menu panels, list panels, parameter entry panels, and
information panels.

p-code
An intermediate code version of the MANTIS program statements that is
used to direct program interpretation (execution) and is translated to and
from MANTIS statements.

PREFIX
Specification on a complex variable definition where each component
simple variable has the complex variable name appended to the
beginning of the generated variable name. For example, SCREEN
MAP(“SCR1”,PREFIX) generates a variable definition for MAP_OPTION
when OPTION is a field defined in the screen, “SCR1”.

Glossary of terms

MANTIS Language 609

procedure
A contiguous set of source code comprising a logical unit. A procedure is
delineated by an ENTRY-EXIT statement pair.

programming mode
A state of a MANTIS task characterized by executing under the Full
Screen Editor or the Line Editor.

prompt
A common dialog action that displays the current list of all valid common
dialog actions and commands for a panel. The Prompt list includes
common dialog actions (common to panels) and function commands
(specific to the current function only). You may select an action or
command with the selection character (/). When you exit from the Prompt
list, your selection is executed.

prompter
MANTIS entity for creating online help screens and documentation.

prototyping
Creating a working model of a data processing system that reflects
system requirements and that can be demonstrated and refined as
necessary.

PWA
Program Work Area. A context block used to contain the contents of an
executing program (the p-code).

record layout
Provides the format in which the data in a file is stored and transmitted.
You can associate an existing record layout to other file designs.

Glossary of terms

610 P39-5002-00

REPLACE statement
A statement coded in the source program for the Component
Engineering Facility (CEF) that names the library, program, password,
and description to be created or replaced as the executable program by
the Compose action.

reserved word
A word that cannot be used for user variable names, such as PAD, FILE,
SCREEN, and so on.

running (mode)
A state of a MANTIS task characterized by executing without an editor
involved. For example, a program invoked by a CHAIN from a facility
menu.

screen
A grouping of information arranged in a particular design. The MANTIS
Facilities are made up of a series of panels. You can create your own
panels for application programs using the Screen Design Facility.

semi-reserved word
A user word which has specific meaning in some way, for example, in the
MANTIS DL/I interface. These user variables are used in a prescribed
manner to communicate with MANTIS components.

Glossary of terms

MANTIS Language 611

sequence
A keyword parameter in the CSIOPTNS statement for a source program.
The SEQUENCE parameter lets you specify how the line numbers in a
composed program are sequenced before the program is replaced. The
system default value is SEQUENCE 10,10.

SETPRAY
Another name for the MANTIS Cluster, and its DDNAME in CICS.

sign character
Includes the plus (+) and minus (-) signs and the Credit (CR) or Debit
(DR or DB) signs. The sign characters can only be used for displaying the
output of numeric fields.

simple variable
A scalar or array defined by the TEXT, BIG, SMALL, or KANJI
statements, or as a result of executing a complex variable statement
(which implicitly defines it). See “complex variable” on page 599.

skeleton programs
Generic programs supplied with MANTIS for modification by users,
including sample browse programs, entry programs, menu programs,
and so on.

SMALL
A data type occupying floating point singleword precision variable. Also a
reserved word and statement.

source program
A MANTIS program of source code and at least one COMPONENT
statement. Source programs are not executable. The Compose action is
issued on a source program to assemble (compose) it into a composed
program of source code and expanded component code that you can edit
and run. See composed program and executable program.

Glossary of terms

612 P39-5002-00

SOURCE statement
A Component Engineering Facility (CEF) statement that is coded in an
executable program to name the library, program, password, and
description of the source program to be created or replaced by the
Decompose action.

SQL bind
For DB2 environments only: Static: Places information about a program’s
SQL statements and their host variables into an internal file to create an
SQL support module for static execution of the program. Extended
Dynamic: Dynamically creates a DB2 for VSE and VM (formerly SQL/DS)
Access Module for the program, saves information about SQL
statements and host variables, and makes the program immediately
executable at the end of the bind.

statement
The smallest executable unit of a MANTIS program.

STATUS
(1) An attribute of some MANTIS entities (USER, FILE), that indicates
whether or not the entity can be used. “ACTIVE” indicates it is available,
anything else, not. (2) A value associated with complex data entities to
indicate for files, PF12 for screens. (3) A feedback mechanism from
certain files or database systems (VSAM, TOTAL, DL/I) in which MANTIS
receives the result of the last operation against it.

terminate (exit)
A common dialog action that terminates the current function and returns
a higher level function. For example, exiting from the Update Field
Specifications function takes you back to the Screen Design Facility
menu.

TEXT
A character data type containing an EBCDIC (English) text string.

Glossary of terms

MANTIS Language 613

TOTAL file view
Detailed information about the contents and format stored in a TOTAL
file. A file view allows you to control access to the information by
password protecting certain portions of the file data.

TPI
Teleprocessing Interface. A module which contains code specific to the
host environment, such as CICS, TIS/CM, IMS/DC, OS-BATCH.

Transfer file
A VSAM file used by the Transfer Facility to hold MANTIS entities or data
for sharing between users or systems.

TWA
Transaction Work Area (or Task Work Area) from CICS. Main context
block used throughout MANTIS and TPI to hold information about the
user, the task, the executing program, work areas, and other global
variables. Also contains addresses to all major context blocks.
Environment independent.

unbind
An action that replaces the HPO-bound version of a MANTIS program
with the unbound version.

uppercase
Attribute in Screen Design to indicate whether data entry text fields are
translated to uppercase characters or remain as the user entered it. This
setting is overridden by the ATTRIBUTE statement and disregarded if the
terminal does not support uppercase. Uppercase is also available in
Prompter Design if terminal support is available.

Glossary of terms

614 P39-5002-00

user code
A code that is a part of the MANTIS cluster VSAM key. This is used to
identify records which belong to a given user ID. User codes less than 16
are reserved for Cincom use only.

user word
The name of a MANTIS variable in a MANTIS program. Also known as a
USER VARIABLE or VARIABLE. This includes all simple and complex
data types.

vertical repeats
Attribute set in Screen Design to indicate the number of times a field is to
repeat vertically on a screen.

vocabulary
Set of all user words active for a program. Also used to refer to the area
where the text representation of these words are kept.

VWA
Vocabulary Work Area. A context block which contains the INDEX of the
data areas (DWA) and the vocabulary area.

window mode
Mode in MANTIS that allows you to view a screen design that is larger
than the physical terminal.

MANTIS Language 615

Index

)
semicolon (22

A

ABS
summary 76

ABS 86
absolute value See ABS
ACCESS 87–92

binding consideration 88
code example 92
PREFIX 89
summary 76

accessing
facilities 30

accessing files See FILE
accessing interfaces See

INTERFACE
accessing prompters See

PROMPT
active map 158

definition 561
adding new records See INSERT
addition See POINT
angle See ATN
apostrophe See single quote
arithmetic expression 45–49, 94

operands 45
operators 46–49

array
allocating one dimensional 416
arithmetic 45
assigning a value 308
definition 27
naming 415
storage 28

array variables See SMALL

ASI See Attribute Status Indicator
ASI (Function) 93

summary 76
Asian language support See

DBCS
asterisk

double (**) 23
single (*) 23

at sign (@)
composed program 385
nominating components 23

ATN 94
ATTRIBUTE (Function) 95

code examples 102
general considerations 100
restriction 97, 99
summary 76
syntax 95

ATTRIBUTE (Statement) 102–33
CONVERSE 104
cursor positioning 120
mixed data 595
PRINTER 106
RESET 102, 120
restriction 104, 107
summary 76
syntax 102
TERMINAL 108

Attribute Status Indicator 93
attributes

abbreviations 110–12
affecting map sets 566
color 126
field

considerations 560
listed by type 110–12
multiple 113
restrictions for numeric 113

automatic mapping 214
advantages of 33–35
clearing variables 147
code examples 542
compared to COBOL moves 35
definition 33
leveling 541
standard names 35

AUTOSKIP 118

Index

616 P39-5002-00

B

background task
CSOL (log) file

abend codes 364
errors 363

Non-MANTIS 366
termination 363

Batch
COMMIT 150
PRINTER restrictions 371
status messages 525

BIG 134–35
summary 76

blank-fill character 560
AUTOSKIP 118

BLINK 118
BOTTOM LINE ENTERABLE 126
BOXED 119
BREAK

summary 76
BREAK 136
BRIGHT 119
buffers

flushing 149
built-in function

alphabetical list 63–68
definition 63
listed by type 72

C

CALL 137–38
summary 76

case insensitive compare 60
centering headings See HEAD
CHAIN 139–43

best conditions for use 546
External DO 536
I/O accesses 537
summary 76
uppercase translation 142
work area example 536

CHAIN
without LEVEL 141

character set 22
CHR 144
CICS MANTIS

function status messages 524
CLASS

selecting print mode 108

CLEAR
array 146
HEAD 270
summary 77

CLEAR 145–48
CMS

status messages 525
colon (

) 22
color attributes 126
comma (,) 22
command line 556
commands

listed with mode 76–85
commands

affected by mixed data 593
comment

characters 23
indicating in programs 39

COMMENTS= 166
COMMIT

Batch mode 150
summary 77

COMMIT 149–52
complete unit of work See

COMMIT
complex statements

automatic mapping 214
defining 541

COMPONENT 153–56
best conditions for use 546
notation requirements 155
summary 77

components for decompose See
SOURCE

Compose action 153
forcing 167

compose options See
CSIOPTNS

composed executable program
153

conditional execution See
WHILE-END. See WHEN-
END

conditional repeat See NEXT
continuation

restrictions 37
control

return from subroutine 388
control intervals 549–53

Index

MANTIS Language 617

CONVERSE 157–63
active map 158
automatic DEQUEUE 161
changing maps passive to

active 162
clearing maps 162
code example 163
FULL DISPLAY 161
general considerations 160–62
map 563
passive map 158
resulting actions 160
summary 77
syntax 157
with windowing 569

CONVERSE
affect on map sets 562
map

examples 564–66
COS

summary 77
COS 164
cosine See COS
CSIOPTNS 165–70

notation requirements 169
summary 77

current date See DATE
(Function)

current language See
LANGUAGE (Statement)

current password See
PASSWORD

current printer setting See
PRINTER (Function)

current release See RELEASE
(Function)

current terminal ID See
TERMINAL

current time See TIME (Function)
CURSOR 120, 171–75

CLEAR 173
general conderations 173
location 171
restriction 171
summary 77
syntax 171

cursor positioning
automatic reset 120

D

dash See minus sign
data

passing between programs 142
storing

in SQLCA 424
SQL in MANTIS 432

storing SQLDA in MANTIS 429
transfer

from SQLDA to MANTIS 426
SQLCA to MANTIS 420

transferring 527
data area available See

DATAFREE
Data Work Area 176

allocating 531, 536
size limits 533

DATAFREE 176
summary 77

DATE (Function) 177–78
summary 77

DATE (Statement) 179–80
DBCS

considerations 29
data 62

DBCS (Statement) 181–82
DBCS data to mixed data See

MIXM
DBCS from mixed data See

MIXD
DBCS. See Double Byte

Character Set
deadlocks 211, 550–53

rules for avoiding 553
debugging 452
debugging 506
defining text variables See TEXT
DELETE 181–202
DELETE (External File)

automatic RESET 188
general considerations 185–88
key 184
partial deletion 188
syntax 183

DELETE (External File) 183–88
DELETE (MANTIS file) 181–83

syntax 189

Index

618 P39-5002-00

DELETE (MANTIS File)
automatic RESET 192
key 189
partial deletion 192
returned statuses 192
TRAP 192

DELETE (Personal computer file)
189–96

syntax 194
DELETE (RDM Logical view) 197
DELETE (TOTAL File view) 200–

202
DEQUEUE

summary 78
DEQUEUE 203–5

restrictions 204
DETECTABLE 121
dimensions 134

arrays 415
specifying for text variables 457
terminal 121
variables 415

displaying data See SHOW
displaying intensity 119
dissimilarity debugging 513
DO

affect on performance 207
summary 78

DO 206–8
DOLEVEL

maximum 532
DOLEVEL 209

summary 78
double quotes (" ") 22

REPLACE 385
dynamic offset See row,column

E

E (Function) 210
summary 78

editing checks 578
editing numeric expressions See

FORMAT
ENQUEUE

released by CHAIN 142
restrictions 212
summary 78

ENQUEUE 211–12

ENTRY-EXIT 213–16
CHAIN 142
COMPONENT 154
DO 207
summary 78

equal sign (=) 23
error tracking See TRAP
exclamation point (!) 23
EXEC_SQL-END 217

summary 78
executing a new program See

CHAIN
executing current program See

RUN
executing statement blocks See

NEXT
execution level 209
EXIT

command 219
summary 78

exiting
loops 136

exiting a unit of logic See RESET
exiting conditional statements

See BREAK
EXP

summary 78
EXP 220
exponents See EXP
extended status messages 521
External DO 527–49

best conditions for use 545
CALL 528
calling subroutines 544
CHAIN 533–37, 533–37
code example 536
code examples 548
COMPONENT 528
debugging 545
definition 528
entity definition 543
I/O reduction 537
Internal DO 533–37
modularization 540
passing parameters 104, 531
PERFORM 528
PROGRAM 538
programming guidelines 537–

49
supported by reserved words

529
terminal I/O 543

Index

MANTIS Language 619

external file
status messages 521

external routine level See
DOLEVEL

external routines
command placement 549

external subroutine
naming 373

F

Facility Selection Menu 30
FALSE

summary 78
FALSE 221
field

cursor specifications 120
field characteristics See

ATTRIBUTE (Statement)
field dimensions See SIZE
field modification See MODIFIED
field status See ASI
FILE

binding consideration 222
summary 78

FILE 222–25
file status See FSI (Function)
files

VSAM 550
filling variables See PAD
FORCE 167
FOR-END 226–29

summary 78
FORMAT

summary 78
FORMAT 230–31
freeing resources See

DEQUEUE
freeing storage See RELEASE

(Statement)
FSE See Full Screen Editor

FSI See Function Status
Indicator

FSI (Function) 232
summary 79

FULL DISPLAY 121, 560
Full-Screen Editor

commands 516
Full-Screen Editor

definition 32
Function Status Indicator 232–

33, 232–33
function format 521

functions
built in

affected by mixed data 590
listed by type 63–68

G

GET 234
GET (External file) 234–39
GET (MANTIS file) 249–53
GET (Personal computer file)

254–55
GET (RDM Logical view) 259–64
GET (TOTAL File view) 265–69

H

hash character (#) 22
HEAD 270–71

summary 79
heading fields

using mixed data 582
HELP 272–73

summary 79
HIDDEN 119
highest field status See VSI

(Function)
HIGHLIGHT 121
holding a resource See

ENQUEUE

Index

620 P39-5002-00

I
IF-ELSE-END 274–76

summary 79
immediate execution See RUN
IMS

COMMIT 150
incremental execution See

FOR-END
indentation periods See nesting

hierarchy
input data See OBTAIN
INSERT 277–93
INSERT (External file) 277–79
INSERT (MANTIS file) 280–82
INSERT (Personal computer file)

283–86
INSERT (RDM Logical view)

287–88
INSERT (TOTAL File view) 291–

93
INT

summary 79
INT 294
integer value See INT
INTERFACE 295–97

summary 79
interface area layout 137
Internal DO

best conditions for use 546
code example 533
definition 528
External DO 533–37
I/O accesses 537

internal storage
releasing 380

invoking background tasks See
PERFORM

invoking interfaces See CALL

K

KANJI 181–82
summary 79

KEEP MAP MODIFIED 122, 566
KEY 301–2

summary 79
key simulation field 556
keyboard input See KEY
KILL 303–4

summary 79
KMM See KEEP MAP MODIFIED

L

LANGUAGE (Function) 305
LANGUAGE (Statement) 306
LEFT BAR 122
LET 308

mixed data 593
summary 80

LET (Numeric) 308
ROUNDED 309

LET (Text/DBCS) 312
code examples 319
general considerations 315

LEVEL
CHAIN 141

Line Editor
definition 32

line numbers
sequencing 168

locating cursor positon See
CURSOR

locating names used See
USAGE

locking a resource See
ENQUEUE

LOG 320
summary 80

logarithm See LOG
logic verbs

list 38
logical display

size 556
logical interface 555
Logical Terminal Interface

MANTIS 555
Logical Unit of Work

backing out 387
completion 149

logical view
current position 324

logon See sign on
loop termination See KILL
loops

exiting 136
LOWERCASE 131, 321–22

summary 80
LTI See Logical Terminal

Interface
LUID 323

Index

MANTIS Language 621

M

MANTIS
overview of 21

MANTIS access to SQLDA See
SQLDA

MANTIS file
status messages 521

list 522–23
mantissa

definition 43
map

clearing 574, 573–74
map set

attributes 566
building 561–62
clearing 146, 574–77

examples 575–77
CONVERSE 562
position of 561

MARK 324
summary 80

Master User
definition 29

MDT’s See Modified Data Tags
memory storage 532
message line 556
minus sign (-) 23
MIX 123

RESET 123
MIXD 327

mixed data 592
summary 80

mixed data
in text variable 580
literals 585
setting mode 329
support 123, 579
variables 585

mixed data
expressions 585
heading fields 583

mixed data mode See MIXMODE

MIXM 328
mixed data 591
summary 80

MIXMODE 329–30, 585
summary 80

MIXT 331
mixed data 592
summary 80

MODIFIED 123, 332–34
summary 80

modified data tags 122

N

naming DBCS variables See
DBCS. See KANJI

naming designs See SCREEN
naming external subroutines See

PROGRAM
naming interfaces See

INTERFACE
naming numeric variables See

SMALL. See BIG
NATIVE LANGUAGE SUPPORT

See NLS
natural (e) See E
natural logarithm See LOG
navigation settings See SCROLL
nesting hierarchy 36
NEXT 335

summary 80
NLS

current language 125
language codes 124

NO ALARM 129
NO AUTOSKIP 118
NO BLINK 118
NO COLOR 126
NO CURSOR 120
NO FULL DISPLAY 121
NO HIGHLIGHT 121
NO LEFT BAR 122

Index

622 P39-5002-00

NO MIX 123
NO OVERLINE 126
NO RIGHT BAR 128
NO UNDERLINE 130
nominating entities See

REPLACE
nominating subroutines See

COMPONENT
NON DETECTABLE 121
NORMAL 119
NOT 336–37

summary 80
NULL 338

summary 80
number set

definition 27
NUMERIC 339
numeric attribute

restriction 113
numeric data

considerations 27–28, 27–28
precision 44
storage

BIG 42
SMALL 42

storage 27, 41
example 44
significant digits 42

numeric value
text string 499

numeric value of text See VALUE
numeric variables

specifying dimensions 134

O

OBTAIN 341–42
summary 81

online help See HELP
opaque map

definition 561
opening external files See

ACCESS
operands 45
operators 46–49
OUTPUT 344–45

PRINTER (Statement) 371
summary 81

OVERLINE 126

P

PAD 346–47
mixed data 595
summary 81

parameter
passing with External DO 104,

531
parentheses () 22
passive map 158

definition 561
PASSWORD 349

summary 81
PC CONTACT

status messages 526
PERFORM 350–67

"BACK" 361–62
"EXEC" 358–60
"EXTN" 366–67
"program" 353–55, 356–57,

358–60
"XCTL" 356–57
summary 81

PERFORM
options 352

period (.) 22
physical screen

repositioning 571
PI 367

summary 81
plus sign (+) 23
POINT 368–70

mixed data 591
summary 81

populating number generator See
SEED

populating variables See LET
pound sign See hash character
PRINTER (Function) 370

summary 81
PRINTER (Statement) 371

Batch restrictions 371
summary 81
uppercase translation 371

printing data See OUTPUT
PROGFREE 372

summary 81

Index

MANTIS Language 623

program
clearing all data 145
invoking 350
size limits 410
statement count 411
suspension 410

program
size considerations 547

PROGRAM 373–75
summary 82

program architecture 531–32
program area available See

PROGFREE
program control

NON-MANTIS background task
366

transfer saving MANTIS context
358

transfer without return 356
transfer without variables 352

program control
transferring 527

program execution 391
stopping 388

program loop See SLOT
program stack

releasing 532
program statement limits See

SLICE
program suspension See WAIT
program termination See STOP

conditions 32
Program Work Area

size limits 533
programming

techniques
advanced 527–53

PROMPT 376–77
summary 82

prompter
displaying 376

PROTECT BOTTOM LINE 126,
560

key simulation field 126
PROTECTED 127

R

random number
sequencing 398

random real number See RND
RDM

Status functions 517–20
RDM logical record field

status 93
RDM logical view 501
RDM logical view position See

MARK
RDM view retrieval See VIEW
reading a record See GET
record

replacing 479
recovering program control See

EXIT
recovering program control See

RETURN
referenced variable 474
RELEASE (Function) 378–79
RELEASE (Statement) 380
releasing TOTAL views See

DEQUEUE
removing data See CLEAR
removing placeholders See

UNPAD
removing records See DELETE
repeated execution See UNTIL-

END
REPLACE 383–86

summary 82
replacing records See UPDATE
reserved words xiii, 515

definition 24
use in programs 31

RESET 127
MIX 123
NO MIX 123
summary 82

RESET (Statement) 387
RESET MAP MODIFIED 122,

566

Index

624 P39-5002-00

resetting keys. See CLEAR
resources

controlling 211
restoring Screen Design values

127
retrieving files See ACCESS
retrieving RDM Views See VIEW
retrieving TOTAL views See

TOTAL
RETURN

summary 82
RETURN 388
REVERSE VIDEO 128
RIGHT BAR 128
RMM See RESET MAP

MODIFIED
RND 389–90

summary 82
ROUNDED

LET (Numeric) 309
routing data See PRINTER

(Statement)
routing output See OUTPUT
row ,column 157
RUN 391–92

partial program 32
summary 82

S

SAF See SEND ALL FIELDS
SBCS from data See MIXT
scalar variables See SMALL
scientific notation 42–44

definition 42
SCREEN 393–95

summary 82
screen design 556–60

multiple images 567–68
specifying 393
using mixed data 581

screen design
work area 556

screen heading See HEAD
screen overlay 563
SCROLL 396–97

summary 82
SEED 398

summary 83
SEND ALL FIELDS 129
SEND MODIFIED FIELDS 129

sequencing program line
numbers 168

setting time format See TIME
(Statement)

SGN 399
summary 83

Shift-in 329, 579
Shift-out 329, 579
SHOW 400–403

Batch restrictions 401
mixed data 594
summary 83

SI See Shift-in
sign on

MANTIS Sign-On Screen 29
SIN 403

summary 83
sine See SIN
single quote (‘) 22
SIZE 404–9

mixed data 590
summary 83

SIZE 514
size of terminal See TERMSIZE
slash (/) 23
SLICE 410–12

DO 207
summary 83

SLOT 413–14
summary 83

SLOT
DO 207

SMALL 415–16
numeric storage 27
summary 83

SMF See SEND MODIFIED
FIELDS

SO See Shift-out
SO/SI attribute 581
SO/SI pair 583
SOUND ALARM 129
SOURCE 417–19

summary 83
source program 154

returning to library 383
special characters

list 22–23
SQL statements See

EXEC_SQL-END
SQLCA (Function) 420–23

summary 83
SQLCA (Statement) 424–25

Index

MANTIS Language 625

SQLDA (Function) 426–31
SQLDA (Function)

summary 83
SQLDA (Statement) 432–50
SQR 451

summary 83
square root See SQR
starting user-written programs

See PERFORM
statements

executing a block 478
listed with mode 76–85
repeated execution 226

statements
affected by mixed data 593

step processing See STOP. See
IF-ELSE-END

STOP 452–53
summary 84

subroutine
return control 388

subroutine boundaries See
ENTRY-EXIT

subscript
definition 44
examples 53

subtraction See POINT
symbolic names 25

consistency checking 24
definition 24
location in a program 495
maximum in program 24
uppercase translation 24
using reserved word 24

symbolic names in use See
USERWORDS

T

TAN 454
summary 84

tangent See TAN
TERMINAL

summary 84
TERMINAL 455
terminal output See CONVERSE
TERMSIZE

summary 84
TERMSIZE 456
testing cursor location See

CURSOR
testing input See FALSE
testing negative outcomes See

ZERO
testing values See TRUE
TEXT

summary 84
TEXT 457–59
text data

storage 50
literals 50

text expression 55–58
examples 57

text string
converting to uppercase 493
numeric value 499

text string conversion 230. See
UPPERCASE. See
LOWERCASE

text value 473. See TXT
text variable

definition 52
mixed data in 580

Index

626 P39-5002-00

TIME (Function) 460–61
summary 84

TIME (Statement) 462–63
summary 84

TOTAL
avoiding system resource lock

up 467
loop conditions 470
summary 84

TOTAL 464–68
TOTAL lock up

COMMIT 150
tracking errors See TRAP
transferring program execution

See DO
transferring SQL data See

SQLCA (Function)
translation table

specifying 124
translucent map

definition 561
TRAP

summary 84
TRAP 469–71
TRUE

summary 84
TRUE 472
TXT 473

summary 84

U

unary operators 48
unary signs See SGN
UNBOXED 119
underline 22
UNDERLINE 130
unformatted data

assigning values 341
UNMODIFIED 123
UNPAD 474–77

mixed data 596
summary 84

UNPROTECTED 127
UNTIL-END 478

summary 84

UPDATE 479–92
UPDATE (External file) 479–85
UPDATE (MANTIS file) 479
UPDATE (Personal computer

file) 486–87
UPDATE (RDM Logical view)

487–90
UPDATE (TOTAL File view) 491–

92
UPPERCASE 131, 493–94

summary 84
uppercase restriction

CSIOPTNS 165
uppercase translation

hierarcy 131
systemwide hierarchy 60

USAGE 495–96
summary 85

USER 497
summary 85

user name See USER
user word table

size limit 536
USERWORDS 498

summary 85

V

valid number 339
valid numbers See NUMERIC
Validity Status Indicator 505
VALUE 499–500

summary 85
value of PI See PI
variable dimensions See DBCS

(Statement)
variable name

limits 135
variable values See LET
variables

allocating small scalar 416
assigning a value 308
extending 346
limit 416
naming 415, 457
passed 542
removing characters 474
updated with External DO 530

Index

MANTIS Language 627

vertical bar (|) 23
inserting comments 39

VIDEO 128
VIEW 501–4

summary 85
Vocabulary Work Area

releasing 531
size limits 533

VSAM files
control intervals 550

VSI See Validity Status Indicator
VSI (Function) 505

summary 85

W

WAIT 506–7
summary 85

WHEN-END 508–9
summary 85

WHILE-END 510–11
NEXT 335
summary 85

window mode 570, 569–73
CONVERSE 569
limitations 571
program initiated 569
terminating 573
terminating 573

Z

ZERO 512
summary 85

zero-length text value See NULL

Index

628 P39-5002-00

	Back to Welcome (OS/390, VSE/ESA)
	About this book
	Using this document
	Document organization
	Revisions to this manual
	Conventions

	MANTIS documentation series
	Educational material

	Chapter 1 - Overview of MANTIS language
	Text considerations
	Symbolic names
	Numeric considerations
	DBCS considerations
	Signing on to MANTIS

	Chapter 2 - MANTIS conventions
	Programming fundamentals
	Automatic mapping
	Advantages of automatic mapping

	Statements
	Commands
	SHOW as a statement
	SHOW as a command

	Comments

	Numeric data
	Numeric literals and variables
	Scientific notation (E-notation)
	Arithmetic arrays
	Arithmetic expressions

	Text data
	Text literals and variables
	Defining text variables
	Substringing text variables

	Text expressions
	Text addition (concatenation) and subtraction operators

	Relational text expressions

	DBCS considerations
	Built-in functions

	Chapter 3 - MANTIS programming language
	MANTIS language summary
	ABS
	ACCESS
	ASI
	ATN
	ATTRIBUTE
	ATTRIBUTE (Function)
	ATTRIBUTE (Statement)
	ATTRIBUTE screen-name statement
	ATTRIBUTE PRINTER/TERMINAL statement
	ATTRIBUTE TERMINAL/CURSOR statement
	General considerations for the ATTRIBUTE statement
	Examples of the ATTRIBUTE statement

	BIG
	BREAK
	CALL
	CHAIN
	CHR
	CLEAR
	COMMIT
	COMPONENT
	CONVERSE
	General considerations

	COS
	CSIOPTNS
	CURSOR
	DATAFREE
	DATE (Function)
	DATE (Statement)
	DBCS (Statement)(Kanji users only)
	DELETE
	DELETE (External file)
	DELETE (MANTIS file)
	DELETE (Personal computer file)
	DELETE (RDM logical view)
	DELETE (TOTAL file view)

	DEQUEUE
	DO
	DOLEVEL
	E
	ENQUEUE
	ENTRY-EXIT
	EXEC_SQL-END
	EXIT (Command)
	EXP
	FALSE
	FILE
	FOR-END
	FORMAT
	FSI
	GET
	GET (External file)
	MANTIS external VSAM KSDS nonunique alternate key processing
	The problem of skipping records
	A comparison of GET filename(key) and GET filename(key)EQUAL

	GET (MANTIS file)
	GET (Personal computer file)
	GET (RDM logical view)
	GET (TOTAL file view)

	HEAD
	HELP
	IF-ELSE-END
	INSERT
	INSERT (External file)
	INSERT (MANTIS file)
	INSERT (Personal computer file)
	INSERT (RDM logical view)
	INSERT (TOTAL file view)

	INT
	INTERFACE
	KANJI (Kanji users only)
	KEY
	KILL
	LANGUAGE (Function)
	LANGUAGE (Statement)
	LET (Numeric (BIG/SMALL) variables)
	LET (TEXT/KANJI/DBCS variables)
	LOG
	LOWERCASE
	LUID
	MARK (SUPRA RDM users only)
	MIXD
	MIXM
	MIXMODE
	MIXT
	MODIFIED
	NEXT
	NOT
	NULL
	NUMERIC
	OBTAIN
	ORD
	OUTPUT
	PAD
	PASSWORD
	PERFORM
	PERFORM transfers control to another program without passing program variables
	PERFORM transfers control to an external program without a return
	PERFORM transfers control to another program and saves MANTIS context without a return
	PERFORM starts a MANTIS program as a background task
	PERFORM starts a non-MANTIS program as a background task

	PI
	POINT
	PRINTER (Function)
	PRINTER (Statement)
	PROGFREE
	PROGRAM
	PROMPT
	RELEASE (Function)
	RELEASE (Statement)
	REPLACE
	RESET
	RETURN
	RND
	RUN
	SCREEN
	SCROLL
	SEED
	SGN
	SHOW
	SIN
	SIZE
	SLICE
	SLOT
	SMALL
	SOURCE
	SQLCA (Function)
	SQLCA (Statement)
	SQLDA (Function)
	Read header elements
	Read repeating elements

	SQLDA (Statement)
	Allocate an SQLDA
	Deallocate an SQLDA
	Set header information
	Set repeating element information

	SQR
	STOP
	TAN
	TERMINAL
	TERMSIZE
	TEXT
	TIME (Function)
	TIME (Statement)
	TOTAL
	TOTAL (TOTAL and SUPRA PDM users only)

	TRAP
	TRUE
	TXT
	UNPAD
	UNTIL-END
	UPDATE
	UPDATE (External file)
	UPDATE (MANTIS file)
	UPDATE (Personal computer file)
	UPDATE (RDM logical view)
	UPDATE (TOTAL file view)

	UPPERCASE
	USAGE
	USER
	USERWORDS
	VALUE
	VIEW
	VSI
	WAIT
	WHEN-END
	WHILE-END
	ZERO

	Appendix A - Dissimilarity debugging
	Appendix B - MANTIS reserved words
	Appendix C - Status functions
	RDM status functions
	Function Status Indicators
	FSI example

	Attribute Status Indicators
	ASI example

	Validity Status Indicators
	VSI example

	Extended status messages for MANTIS and external files
	File status codes and messages
	CICS MANTIS FSI message text descriptions for internal and external files or views
	MANTIS for batch FSI message text descriptions for internal and external files or views
	PC CONTACT FSI message text descriptions for internal and external files

	Appendix D - Advanced programming techniques
	External DO
	Using external DO
	Parameter passing
	Program architecture
	Internal DO vs. external DO vs. CHAIN
	External DO programming guidelines
	Program statement
	Modularization
	Automatic mapping
	Terminal I/O
	Entity definition
	Frequency of calls
	Debugging
	Conversion
	Program size
	Programming techniques
	Rollout/Rollin

	VSAM deadlocks
	VSAM Files
	Deadlocks on GET NEXT
	Rules for avoiding deadlocks

	Appendix E - Enhanced screen and program design
	Designing screens
	Building a map set in your program
	The CONVERSE statement and mapping examples
	Multiple images of a single screen design

	Windowing
	Window mode
	Terminating window mode

	Clearing a map
	Clearing a map set

	Advanced editing

	Appendix F - Mixed-data support
	Using mixed-data in your program
	Using mixed-data in screen design
	Heading fields
	Screen design output and input and SO/SI pairs

	Mixed-data expressions
	MIXMODE statement
	Literals and variables
	Concatenation
	Deconcatenation
	Subscripts
	Literals and mixed-data expressions

	Built-in functions
	SIZE
	POINT
	MIXM
	MIXD
	MIXT

	Statements and commands
	LET
	SHOW
	ATTRIBUTE
	PAD
	UNPAD

	Glossary of terms
	| (vertical bar)
	* (asterisk)
	@ (at sign)
	attribute
	background task
	BIG
	bind
	CEF
	CEND statement
	chain
	comments
	COMMIT points
	complex variable
	component
	Component Engineering Facility (CEF)
	compose
	composed program
	data area
	data block
	data element
	data position characters
	decompose
	DOLEVEL
	domain
	DOSTACK
	double byte character set (DBCS)
	DWA
	edit characters
	edit masks
	entity (or MANTIS entity)
	executable program
	extended attribute support
	external file view
	field attribute
	file view
	fill characters
	fixed position characters
	float characters
	Full Screen Editor (FSE)
	function key
	function key area
	header
	heading fields
	help
	horizontal repeats
	HPO bind
	HPO unbind
	immediate mode statement
	index
	INTERFACE
	interface area
	internal file view
	Kanji
	leveling
	line commands
	line editor
	logical terminal
	logoff
	LTI
	map
	map set
	Master User
	menu
	mixed-data type support
	multiple buffering
	nominate
	nucleus
	numeric data
	numeric fields
	opaque map
	panel
	p-code
	PREFIX
	procedure
	programming mode
	prompt
	prompter
	prototyping
	PWA
	record layout
	REPLACE statement
	reserved word
	running (mode)
	screen
	semi-reserved word
	sequence
	SETPRAY
	sign character
	simple variable
	skeleton programs
	SMALL
	source program
	SOURCE statement
	SQL bind
	statement
	STATUS
	terminate (exit)
	TEXT
	TOTAL file view
	TPI
	Transfer file
	TWA
	unbind
	uppercase
	user code
	user word
	vertical repeats
	vocabulary
	VWA
	window mode

	Index

